Abstract

We study theoretically and experimentally a new mechanism for the rotation of the polarization ellipse of a single laser beam propagating through an atomic vapor with a frequency tuned near an atomic resonance. The results of a theoretical treatment for the case of a J = 1/2 to J = 1/2 atomic transition show that a rotation of the polarization ellipse of the laser beam will occur as a result of ground-state optical pumping and that the angle of rotation is independent of the laser intensity over a broad range of laser intensities. The predictions of this theoretical model are tested experimentally through the use of potassium vapor and are found to agree with the experimental data.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. D. Maker, R. W. Terhune, Phys. Rev. 137, A801 (1965).
    [Crossref]
  2. M. S. Feld, M. M. Burns, T. U. Kühl, P. G. Pappas, D. E. Murnick, Opt. Lett. 5, 79 (1980).
    [Crossref] [PubMed]
  3. E. Köster, J. Mlynek, W. Lange, Opt. Commun. 53, 53 (1985).
    [Crossref]
  4. S. Saikan, M. Kiguchi, Opt. Lett. 7, 555 (1982).
    [Crossref] [PubMed]
  5. M. Ducloy, R. K. Raj, D. Bloch, Opt. Lett. 7, 60 (1982).
    [Crossref] [PubMed]
  6. E. Köster, J. Kolbe, F. Mitschke, J. Mlynek, W. Lange, Appl. Phys. B 35, 201 (1984).
    [Crossref]
  7. G. Giusfredi, P. Salieri, S. Cecchi, F. T. Arecchi, Opt. Commun. 54, 39 (1985).
    [Crossref]
  8. S. Saikan, J. Opt. Soc. Am. 68, 1185 (1978).
    [Crossref]
  9. T. Baer, I. D. Abella, Phys. Rev. A 16, 2093 (1977).
    [Crossref]
  10. T. Baer, Phys. Rev. A 18, 2570 (1978).
    [Crossref]
  11. M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, London, 1974).
  12. W. Happer, Rev. Mod. Phys. 44, 169 (1972).
    [Crossref]
  13. R. B. Miles, S. E. Harris, IEEE J. Quantum Electron. QE-9, 470 (1973).
    [Crossref]
  14. M. Pinard, P. Verkerk, E. Giacobino, G. Grynberg, Phys. Rev. A 35, 2951 (1987).
    [Crossref] [PubMed]
  15. H. G. Dehmelt, Phys. Rev. 105, 1487 (1957).
    [Crossref]

1987 (1)

M. Pinard, P. Verkerk, E. Giacobino, G. Grynberg, Phys. Rev. A 35, 2951 (1987).
[Crossref] [PubMed]

1985 (2)

E. Köster, J. Mlynek, W. Lange, Opt. Commun. 53, 53 (1985).
[Crossref]

G. Giusfredi, P. Salieri, S. Cecchi, F. T. Arecchi, Opt. Commun. 54, 39 (1985).
[Crossref]

1984 (1)

E. Köster, J. Kolbe, F. Mitschke, J. Mlynek, W. Lange, Appl. Phys. B 35, 201 (1984).
[Crossref]

1982 (2)

1980 (1)

1978 (2)

S. Saikan, J. Opt. Soc. Am. 68, 1185 (1978).
[Crossref]

T. Baer, Phys. Rev. A 18, 2570 (1978).
[Crossref]

1977 (1)

T. Baer, I. D. Abella, Phys. Rev. A 16, 2093 (1977).
[Crossref]

1973 (1)

R. B. Miles, S. E. Harris, IEEE J. Quantum Electron. QE-9, 470 (1973).
[Crossref]

1972 (1)

W. Happer, Rev. Mod. Phys. 44, 169 (1972).
[Crossref]

1965 (1)

P. D. Maker, R. W. Terhune, Phys. Rev. 137, A801 (1965).
[Crossref]

1957 (1)

H. G. Dehmelt, Phys. Rev. 105, 1487 (1957).
[Crossref]

Abella, I. D.

T. Baer, I. D. Abella, Phys. Rev. A 16, 2093 (1977).
[Crossref]

Arecchi, F. T.

G. Giusfredi, P. Salieri, S. Cecchi, F. T. Arecchi, Opt. Commun. 54, 39 (1985).
[Crossref]

Baer, T.

T. Baer, Phys. Rev. A 18, 2570 (1978).
[Crossref]

T. Baer, I. D. Abella, Phys. Rev. A 16, 2093 (1977).
[Crossref]

Bloch, D.

Burns, M. M.

Cecchi, S.

G. Giusfredi, P. Salieri, S. Cecchi, F. T. Arecchi, Opt. Commun. 54, 39 (1985).
[Crossref]

Dehmelt, H. G.

H. G. Dehmelt, Phys. Rev. 105, 1487 (1957).
[Crossref]

Ducloy, M.

Feld, M. S.

Giacobino, E.

M. Pinard, P. Verkerk, E. Giacobino, G. Grynberg, Phys. Rev. A 35, 2951 (1987).
[Crossref] [PubMed]

Giusfredi, G.

G. Giusfredi, P. Salieri, S. Cecchi, F. T. Arecchi, Opt. Commun. 54, 39 (1985).
[Crossref]

Grynberg, G.

M. Pinard, P. Verkerk, E. Giacobino, G. Grynberg, Phys. Rev. A 35, 2951 (1987).
[Crossref] [PubMed]

Happer, W.

W. Happer, Rev. Mod. Phys. 44, 169 (1972).
[Crossref]

Harris, S. E.

R. B. Miles, S. E. Harris, IEEE J. Quantum Electron. QE-9, 470 (1973).
[Crossref]

Kiguchi, M.

Kolbe, J.

E. Köster, J. Kolbe, F. Mitschke, J. Mlynek, W. Lange, Appl. Phys. B 35, 201 (1984).
[Crossref]

Köster, E.

E. Köster, J. Mlynek, W. Lange, Opt. Commun. 53, 53 (1985).
[Crossref]

E. Köster, J. Kolbe, F. Mitschke, J. Mlynek, W. Lange, Appl. Phys. B 35, 201 (1984).
[Crossref]

Kühl, T. U.

Lamb, W. E.

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, London, 1974).

Lange, W.

E. Köster, J. Mlynek, W. Lange, Opt. Commun. 53, 53 (1985).
[Crossref]

E. Köster, J. Kolbe, F. Mitschke, J. Mlynek, W. Lange, Appl. Phys. B 35, 201 (1984).
[Crossref]

Maker, P. D.

P. D. Maker, R. W. Terhune, Phys. Rev. 137, A801 (1965).
[Crossref]

Miles, R. B.

R. B. Miles, S. E. Harris, IEEE J. Quantum Electron. QE-9, 470 (1973).
[Crossref]

Mitschke, F.

E. Köster, J. Kolbe, F. Mitschke, J. Mlynek, W. Lange, Appl. Phys. B 35, 201 (1984).
[Crossref]

Mlynek, J.

E. Köster, J. Mlynek, W. Lange, Opt. Commun. 53, 53 (1985).
[Crossref]

E. Köster, J. Kolbe, F. Mitschke, J. Mlynek, W. Lange, Appl. Phys. B 35, 201 (1984).
[Crossref]

Murnick, D. E.

Pappas, P. G.

Pinard, M.

M. Pinard, P. Verkerk, E. Giacobino, G. Grynberg, Phys. Rev. A 35, 2951 (1987).
[Crossref] [PubMed]

Raj, R. K.

Saikan, S.

Salieri, P.

G. Giusfredi, P. Salieri, S. Cecchi, F. T. Arecchi, Opt. Commun. 54, 39 (1985).
[Crossref]

Sargent, M.

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, London, 1974).

Scully, M. O.

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, London, 1974).

Terhune, R. W.

P. D. Maker, R. W. Terhune, Phys. Rev. 137, A801 (1965).
[Crossref]

Verkerk, P.

M. Pinard, P. Verkerk, E. Giacobino, G. Grynberg, Phys. Rev. A 35, 2951 (1987).
[Crossref] [PubMed]

Appl. Phys. B (1)

E. Köster, J. Kolbe, F. Mitschke, J. Mlynek, W. Lange, Appl. Phys. B 35, 201 (1984).
[Crossref]

IEEE J. Quantum Electron. (1)

R. B. Miles, S. E. Harris, IEEE J. Quantum Electron. QE-9, 470 (1973).
[Crossref]

J. Opt. Soc. Am. (1)

S. Saikan, J. Opt. Soc. Am. 68, 1185 (1978).
[Crossref]

Opt. Commun. (2)

E. Köster, J. Mlynek, W. Lange, Opt. Commun. 53, 53 (1985).
[Crossref]

G. Giusfredi, P. Salieri, S. Cecchi, F. T. Arecchi, Opt. Commun. 54, 39 (1985).
[Crossref]

Opt. Lett. (3)

Phys. Rev. (2)

P. D. Maker, R. W. Terhune, Phys. Rev. 137, A801 (1965).
[Crossref]

H. G. Dehmelt, Phys. Rev. 105, 1487 (1957).
[Crossref]

Phys. Rev. A (3)

M. Pinard, P. Verkerk, E. Giacobino, G. Grynberg, Phys. Rev. A 35, 2951 (1987).
[Crossref] [PubMed]

T. Baer, I. D. Abella, Phys. Rev. A 16, 2093 (1977).
[Crossref]

T. Baer, Phys. Rev. A 18, 2570 (1978).
[Crossref]

Rev. Mod. Phys. (1)

W. Happer, Rev. Mod. Phys. 44, 169 (1972).
[Crossref]

Other (1)

M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, London, 1974).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup used to measure polarization-ellipse rotation in potassium vapor. BS, beam splitter; s, signal detector; r, reference detector.

Fig. 2
Fig. 2

Rotation angle θ of the polarization ellipse as a function of laser intensity for the cases when (a) the laser detuning is held fixed and the laser ellipticity takes on opposite values and (b) the laser ellipticity is held fixed and the laser detuning takes on opposite values. The direction of rotation changes when an opposite ellipticity is used or when the sign of the detuning changes. Notice that the magnitude of the rotation angle is insensitive to the laser intensity for laser intensities between 50 and 600 mW/cm2.

Fig. 3
Fig. 3

Rotation angle θ of the polarization ellipse as a function of laser detuning for an input laser intensity of 400 mW/cm2 and an input laser ellipticity characterized by β = −20° [curve (a)] and β = −30° [curve (b)]. In both cases, the solid curve shows a best-fit hyperbola through the data.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d σ ± d t = ( 1 T 2 + i Δ ) σ ± i g ( n 2 ± n 1 ) E ± ,
d n 1 ± d t = 1 3 T 1 n 2 ± + 2 3 T 1 n 2 1 2 T g ( n 1 + n 1 ) i ( g * E * σ c . c . ) ,
d n 2 ± d t = 1 T 1 n 2 ± i ( g * E ± * σ ± c . c . ) ,
θ = α 0 L 2 δ I + ( 0 ) I ( 0 ) I + ( 0 ) + I ( 0 )

Metrics