Abstract

We describe the observation of laser emission at wavelengths corresponding to whispering-gallery modes from a highly refractive dye-doped solvent flowing in a normally illuminated silica capillary fiber. The cylindrical whispering-gallery-mode laser described here differs from the well-known spherical droplet laser in that it has an internal refractive index discontinuity. Boundary-value computations are presented that reveal that the feedback responsible for the observed lasing modes is associated with total internal reflection at the liquid–silica interface. No laser peaks are observed when the refractive index of the solvent is less than that of the silica.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Owen, R. K. Chang, P. W. Barber, Aerosol Sci. Technol. 1, 293 (1982).
    [CrossRef]
  2. H.-M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, Opt. Lett. 9, 499 (1984).
    [CrossRef] [PubMed]
  3. H.-B. Lin, J. D. Eversole, A. J. Campillo, J. Opt. Soc. Am. B 9, 43 (1992).
    [CrossRef]
  4. C. C. H. Tang, J. Appl. Phys. 28, 628 (1957).
    [CrossRef]
  5. M. Kerker, E. Matijević, J. Opt. Soc. Am. 51, 506 (1961).
    [CrossRef]
  6. H. E. Bussey, J. H. Richmond, IEEE Trans. Antennas Propag. AP-23, 723 (1975).
    [CrossRef]
  7. R. L. Hightower, C. B. Richardson, Appl. Opt. 27, 4850 (1988).
    [CrossRef] [PubMed]
  8. Technologies Polymicro, Inc.Phoenix, Ariz. 85017.

1992 (1)

1988 (1)

1984 (1)

1982 (1)

J. F. Owen, R. K. Chang, P. W. Barber, Aerosol Sci. Technol. 1, 293 (1982).
[CrossRef]

1975 (1)

H. E. Bussey, J. H. Richmond, IEEE Trans. Antennas Propag. AP-23, 723 (1975).
[CrossRef]

1961 (1)

1957 (1)

C. C. H. Tang, J. Appl. Phys. 28, 628 (1957).
[CrossRef]

Barber, P. W.

J. F. Owen, R. K. Chang, P. W. Barber, Aerosol Sci. Technol. 1, 293 (1982).
[CrossRef]

Bussey, H. E.

H. E. Bussey, J. H. Richmond, IEEE Trans. Antennas Propag. AP-23, 723 (1975).
[CrossRef]

Campillo, A. J.

Chang, R. K.

H.-M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, Opt. Lett. 9, 499 (1984).
[CrossRef] [PubMed]

J. F. Owen, R. K. Chang, P. W. Barber, Aerosol Sci. Technol. 1, 293 (1982).
[CrossRef]

Eversole, J. D.

Hightower, R. L.

Kerker, M.

Lin, H.-B.

Long, M. B.

Matijevic, E.

Owen, J. F.

J. F. Owen, R. K. Chang, P. W. Barber, Aerosol Sci. Technol. 1, 293 (1982).
[CrossRef]

Richardson, C. B.

Richmond, J. H.

H. E. Bussey, J. H. Richmond, IEEE Trans. Antennas Propag. AP-23, 723 (1975).
[CrossRef]

Tang, C. C. H.

C. C. H. Tang, J. Appl. Phys. 28, 628 (1957).
[CrossRef]

Tzeng, H.-M.

Wall, K. F.

Aerosol Sci. Technol. (1)

J. F. Owen, R. K. Chang, P. W. Barber, Aerosol Sci. Technol. 1, 293 (1982).
[CrossRef]

Appl. Opt. (1)

IEEE Trans. Antennas Propag. (1)

H. E. Bussey, J. H. Richmond, IEEE Trans. Antennas Propag. AP-23, 723 (1975).
[CrossRef]

J. Appl. Phys. (1)

C. C. H. Tang, J. Appl. Phys. 28, 628 (1957).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Other (1)

Technologies Polymicro, Inc.Phoenix, Ariz. 85017.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Computed extinction efficiency for TM scattering from a normally illuminated capillary fiber with core refractive index m2 = (1.626,0), coating refractive index m1 = (1.458,0), and core-coating diameter ratio a/b = 25/63. The size parameters shown correspond to illumination of a capillary of radius b = 63 μm with orange light. The core resonances discussed in the text are indicated with arrows.

Fig. 2
Fig. 2

Angle-averaged plots of the source function E · E* at two of the core resonance conditions in Fig. 1. The upper plot corresponds to a third-order resonance. The inset shows the region around the core–coating interface (dotted line) in more detail. The lower plot corresponds to the narrower mode at x = 648.9163. This second-order resonance results in considerably greater field enhancement.

Fig. 3
Fig. 3

Observed TE laser spectrum from a 2 × 10−3 M solution of Rhodamine 6G in quinoline flowing in a capillary of nominal size b = 63 μm and a = 25 μm. The mode spacing found in Fig. 1 is shown at the top left for the normal MDR's (upper line) and the core resonances.

Fig. 4
Fig. 4

Portion of a laser spectrum observed by using a pump beam polarized with the electric vector at 45° to the (vertical) fiber axis, which results in approximately equal excitation of the two sets of modes (bottom trace). Polarization analysis (top and middle traces, labeled on right) confirms that the observed sets of peaks have pure TE and TM character.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Q ext = 2 x n = Re ( b n ext )
E coat = z ^ E 0 n = i n [ b n out 1 J n ( m 1 k ρ ) + b n out 2 H n 1 ( m 1 k ρ ) ] × exp [ i ( n ϕ ω t ) ] ,
E core = z ^ E 0 n = i n b n in J n ( m 2 k ρ ) exp [ i ( n ϕ ω t ) ] .

Metrics