Abstract

Holograms are recorded by a 514-nm laser polarized parallel to the molecular director in an azo-dye-doped nematic liquid crystal. For some surface treatments, the recorded holograms persist in the dark. For glass surfaces, exposure to light polarized normal to the molecular director erases the hologram. The hologram also vanishes when the sample is heated across the nematic to isotropic phase transition but reappears when the sample is cooled back to the nematic phase. The dynamics and strength of this effect depend strongly on the surface treatment of the sample cell.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. A. Clark, Phys. Rev. Lett. 55, 292 (1985).
    [Crossref] [PubMed]
  2. W. M. Gibbons, P. J. Shannon, S.-T. Sun, B. J. Swetlin, Nature (London) 351, 49 (1991).
    [Crossref]
  3. M. Eich, J. H. Wendorff, B. Reck, H. Ringsdorf, Makromol. Chem. Rapid Commun. 8, 59 (1987).
    [Crossref]
  4. A. G. Chen, D. J. Brady, Opt. Lett. 17, 441 (1992).
    [Crossref] [PubMed]
  5. D. W. Berreman, Phys. Rev. Lett. 28, 1683 (1972).
    [Crossref]
  6. J. M. Geary, J. W. Goodby, A. R. Kmetz, J. S. Patel, J. Appl. Phys. 62, 4100 (1987).
    [Crossref]
  7. M. B. Feller, W. Chen, Y. R. Shen, Phys. Rev. A 43, 6778 (1991).
    [Crossref] [PubMed]

1992 (1)

1991 (2)

W. M. Gibbons, P. J. Shannon, S.-T. Sun, B. J. Swetlin, Nature (London) 351, 49 (1991).
[Crossref]

M. B. Feller, W. Chen, Y. R. Shen, Phys. Rev. A 43, 6778 (1991).
[Crossref] [PubMed]

1987 (2)

J. M. Geary, J. W. Goodby, A. R. Kmetz, J. S. Patel, J. Appl. Phys. 62, 4100 (1987).
[Crossref]

M. Eich, J. H. Wendorff, B. Reck, H. Ringsdorf, Makromol. Chem. Rapid Commun. 8, 59 (1987).
[Crossref]

1985 (1)

N. A. Clark, Phys. Rev. Lett. 55, 292 (1985).
[Crossref] [PubMed]

1972 (1)

D. W. Berreman, Phys. Rev. Lett. 28, 1683 (1972).
[Crossref]

Berreman, D. W.

D. W. Berreman, Phys. Rev. Lett. 28, 1683 (1972).
[Crossref]

Brady, D. J.

Chen, A. G.

Chen, W.

M. B. Feller, W. Chen, Y. R. Shen, Phys. Rev. A 43, 6778 (1991).
[Crossref] [PubMed]

Clark, N. A.

N. A. Clark, Phys. Rev. Lett. 55, 292 (1985).
[Crossref] [PubMed]

Eich, M.

M. Eich, J. H. Wendorff, B. Reck, H. Ringsdorf, Makromol. Chem. Rapid Commun. 8, 59 (1987).
[Crossref]

Feller, M. B.

M. B. Feller, W. Chen, Y. R. Shen, Phys. Rev. A 43, 6778 (1991).
[Crossref] [PubMed]

Geary, J. M.

J. M. Geary, J. W. Goodby, A. R. Kmetz, J. S. Patel, J. Appl. Phys. 62, 4100 (1987).
[Crossref]

Gibbons, W. M.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, B. J. Swetlin, Nature (London) 351, 49 (1991).
[Crossref]

Goodby, J. W.

J. M. Geary, J. W. Goodby, A. R. Kmetz, J. S. Patel, J. Appl. Phys. 62, 4100 (1987).
[Crossref]

Kmetz, A. R.

J. M. Geary, J. W. Goodby, A. R. Kmetz, J. S. Patel, J. Appl. Phys. 62, 4100 (1987).
[Crossref]

Patel, J. S.

J. M. Geary, J. W. Goodby, A. R. Kmetz, J. S. Patel, J. Appl. Phys. 62, 4100 (1987).
[Crossref]

Reck, B.

M. Eich, J. H. Wendorff, B. Reck, H. Ringsdorf, Makromol. Chem. Rapid Commun. 8, 59 (1987).
[Crossref]

Ringsdorf, H.

M. Eich, J. H. Wendorff, B. Reck, H. Ringsdorf, Makromol. Chem. Rapid Commun. 8, 59 (1987).
[Crossref]

Shannon, P. J.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, B. J. Swetlin, Nature (London) 351, 49 (1991).
[Crossref]

Shen, Y. R.

M. B. Feller, W. Chen, Y. R. Shen, Phys. Rev. A 43, 6778 (1991).
[Crossref] [PubMed]

Sun, S.-T.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, B. J. Swetlin, Nature (London) 351, 49 (1991).
[Crossref]

Swetlin, B. J.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, B. J. Swetlin, Nature (London) 351, 49 (1991).
[Crossref]

Wendorff, J. H.

M. Eich, J. H. Wendorff, B. Reck, H. Ringsdorf, Makromol. Chem. Rapid Commun. 8, 59 (1987).
[Crossref]

J. Appl. Phys. (1)

J. M. Geary, J. W. Goodby, A. R. Kmetz, J. S. Patel, J. Appl. Phys. 62, 4100 (1987).
[Crossref]

Makromol. Chem. Rapid Commun. (1)

M. Eich, J. H. Wendorff, B. Reck, H. Ringsdorf, Makromol. Chem. Rapid Commun. 8, 59 (1987).
[Crossref]

Nature (London) (1)

W. M. Gibbons, P. J. Shannon, S.-T. Sun, B. J. Swetlin, Nature (London) 351, 49 (1991).
[Crossref]

Opt. Lett. (1)

Phys. Rev. A (1)

M. B. Feller, W. Chen, Y. R. Shen, Phys. Rev. A 43, 6778 (1991).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

D. W. Berreman, Phys. Rev. Lett. 28, 1683 (1972).
[Crossref]

N. A. Clark, Phys. Rev. Lett. 55, 292 (1985).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Dark decay of diffraction efficiency for various surface treatments. The holograms are recorded to saturation. The recording beams are turned off at time 0. A 633-nm beam continuously probes the diffraction efficiency.

Fig. 2
Fig. 2

633-nm diffraction of a stable hologram cycled across the nematic to isotropic phase transition.

Fig. 3
Fig. 3

633-nm diffraction efficiency as a function of time for 514-nm recording beams polarized parallel and normal to the recording direction. The arrows indicate the start of recording with parallel polarization and the start of erasing with normal polarization. Data are for a sample with clean glass walls.

Fig. 4
Fig. 4

Transmittance at 633 nm of a sample between crossed polarizers as a function of time for 514-nm pumps polarized parallel and normal to the rubbing direction.

Metrics