Abstract

A novel method for storing a temporal bit sequence based on the angular multiple holographic recording of optical spectral components is proposed. In a preliminary experiment, a 4-bit-long nonreturn-to-zero 200-Mbit/s sequence is successfully recorded and regenerated from a photorefractive BaTiO3 crystal.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Newton, R. S. Howland, K. P. Jackson, H. J. Shaw, Electron. Lett. 19, 756 (1983).
    [CrossRef]
  2. T. W. Mossberg, Opt. Lett. 7, 77 (1982).
    [CrossRef] [PubMed]
  3. C. Joubert, M. L. Roblin, R. Grousson, Appl. Opt. 28, 4604 (1989).
    [CrossRef] [PubMed]
  4. L. H. Acioli, M. Ulman, E. P. Ippen, J. G. Fujimoto, H. Kong, B. S. Chen, M. Cronin-Golomb, Opt. Lett. 16, 1984 (1991).
    [CrossRef] [PubMed]
  5. A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, Opt. Lett. 17, 224 (1992).
    [CrossRef] [PubMed]
  6. D. Brady, A. G.-S. Chen, G. Rodriguez, Opt. Lett. 17, 610 (1992).
    [CrossRef] [PubMed]
  7. S. Norimatsu, K. Iwashita, K. Noguchi, in Digest of Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1992), paper ThD2.
  8. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
  9. D. Rytz, R. R. Stephens, B. A. Wechsler, M. S. Keirstead, T. M. Baer, Opt. Lett. 15, 1279 (1990).
    [CrossRef] [PubMed]
  10. See, for example, P. Günter, J. P. Huignard, Photorefractive Materials and Their Applications I, (Springer-Verlag, Berlin, 1988), Chap. 8.
    [CrossRef]

1992 (2)

1991 (1)

1990 (1)

1989 (1)

1983 (1)

S. A. Newton, R. S. Howland, K. P. Jackson, H. J. Shaw, Electron. Lett. 19, 756 (1983).
[CrossRef]

1982 (1)

1969 (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Acioli, L. H.

Baer, T. M.

Brady, D.

Chen, A. G.-S.

Chen, B. S.

Cronin-Golomb, M.

Fujimoto, J. G.

Grousson, R.

Günter, P.

See, for example, P. Günter, J. P. Huignard, Photorefractive Materials and Their Applications I, (Springer-Verlag, Berlin, 1988), Chap. 8.
[CrossRef]

Howland, R. S.

S. A. Newton, R. S. Howland, K. P. Jackson, H. J. Shaw, Electron. Lett. 19, 756 (1983).
[CrossRef]

Huignard, J. P.

See, for example, P. Günter, J. P. Huignard, Photorefractive Materials and Their Applications I, (Springer-Verlag, Berlin, 1988), Chap. 8.
[CrossRef]

Ippen, E. P.

Iwashita, K.

S. Norimatsu, K. Iwashita, K. Noguchi, in Digest of Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1992), paper ThD2.

Jackson, K. P.

S. A. Newton, R. S. Howland, K. P. Jackson, H. J. Shaw, Electron. Lett. 19, 756 (1983).
[CrossRef]

Joubert, C.

Keirstead, M. S.

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Kong, H.

Leaird, D. E.

Mossberg, T. W.

Newton, S. A.

S. A. Newton, R. S. Howland, K. P. Jackson, H. J. Shaw, Electron. Lett. 19, 756 (1983).
[CrossRef]

Noguchi, K.

S. Norimatsu, K. Iwashita, K. Noguchi, in Digest of Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1992), paper ThD2.

Norimatsu, S.

S. Norimatsu, K. Iwashita, K. Noguchi, in Digest of Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1992), paper ThD2.

Paek, E. G.

Reitze, D. H.

Roblin, M. L.

Rodriguez, G.

Rytz, D.

Shaw, H. J.

S. A. Newton, R. S. Howland, K. P. Jackson, H. J. Shaw, Electron. Lett. 19, 756 (1983).
[CrossRef]

Stephens, R. R.

Ulman, M.

Wechsler, B. A.

Weiner, A. M.

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Electron. Lett. (1)

S. A. Newton, R. S. Howland, K. P. Jackson, H. J. Shaw, Electron. Lett. 19, 756 (1983).
[CrossRef]

Opt. Lett. (5)

Other (2)

S. Norimatsu, K. Iwashita, K. Noguchi, in Digest of Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1992), paper ThD2.

See, for example, P. Günter, J. P. Huignard, Photorefractive Materials and Their Applications I, (Springer-Verlag, Berlin, 1988), Chap. 8.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Basic configuration for storing optical cells. In the recording process, the optical cell is injected into the real-time holographic medium together with the reference beam whose optical frequency is synchronized with that of the optical carrier of the cell. The reference beam is modulated by the acousto-optic modulator to generate sideband components corresponding to those of the optical cell. Sideband components of the cell are holographically recorded by interfering with their counterparts of the reference beam to form refractive-index gratings that have different angles to each other. By using a thick hologram, cross talk between each sideband component can be avoided by the high angular resolution.

Fig. 2
Fig. 2

Experimental setup. AM, amplitude modulator; AOM, acousto-optic modulator; Ar, Ar-ion laser; FD’s, rf frequency downconverters; OS, digitizing oscilloscope; PD, photodiode; PG, pulse pattern generator; POL, polarizer; S’s, shutters; SP, rf spectrum analyzer.

Fig. 3
Fig. 3

Temporal waveforms and microwave spectra of original and regenerated optical cells. The 4-bit data sequences are (a) (1000), (b) (1010), and (c) (1100).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S ( t ) = m ± N a m ( s ) exp { j [ 2 π ( f 0 + m Δ f ) t - k m ( s ) · x + ϕ m ( s ) ] } + c . c . ,
R ( t ) = n ± N a n ( r ) exp { j [ 2 π ( f 0 + n Δ f ) t - k n ( r ) · x + ϕ n ( r ) ] } + c . c . ,
Δ n 1 2 π T 0 T S ( t ) · R * ( t ) d t + c . c . = m ± N a m ( s ) a m ( r ) exp ( j { [ - k m ( s ) + k m ( r ) ] · x + [ ϕ m ( s ) - ϕ m ( r ) ] } ) + c . c .
Δ n · R ( t ) = m ± N a m ( s ) a m ( r ) 2 × exp { j [ 2 π ( f 0 + m Δ f ) t - k m ( s ) · x + ϕ m ( s ) ] } + n m ± N a m ( s ) a m ( r ) a n ( r ) exp ( j { 2 π ( f 0 + n Δ f ) t - [ k m ( s ) - k m ( r ) - k n ( s ) ] · x + ϕ m ( s ) - ϕ m ( r ) - ϕ n ( s ) } ) + c . c .
L c f 0 n Δ θ sin θ B ,

Metrics