Abstract

Growth-induced striations in photorefractive media scatter transmitted light, degrading their performance in holographic applications. We model this phenomenon by considering the striations to be a permanent hologram within a medium and compare it with experimental results in a striated strontium barium niobate crystal. We show that the construction of the phase-conjugate signal beam by a phase conjugate of the transmitted reference beam alleviates the effects of distortions that are due to striations.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Günter, J.-P. Huignard, eds., Photorefractive Materials and Their Applications II (Springer-Verlag, Berlin, 1989).
  2. H. W. Kogelnik, Bell Syst. Tech. J. 44, 2451 (1965); A. E. T. Chiou, P. Yeh, Opt. Lett. 11, 461 (1986); A. Yariv, Opt. Lett. 16, 1376 (1991).
    [CrossRef] [PubMed]
  3. F. Ito, K.-I. Kitayama, H. Oguri, Opt. Lett. 17, 215 (1992).
    [CrossRef] [PubMed]
  4. N. A. Vainos, M. C. Gower, Opt. Lett. 16, 363 (1991).
    [CrossRef] [PubMed]
  5. J. P. Wilde, L. Hesselink, R. S. Feigelson, J. Cryst. Growth 113, 337 (1991).
    [CrossRef]
  6. S. Ducharme, J. Feinberg, R. R. Neurgaonkar, IEEE J. Quantum Electron. QE-23, 2116 (1987).
    [CrossRef]
  7. M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
    [CrossRef]
  8. J. Feinberg, Opt. Lett. 7, 486 (1982).
    [CrossRef] [PubMed]
  9. B. H. Soffer, G. J. Dunning, Y. Owechko, E. Marom, Opt. Lett. 11, 118 (1986); D. Z. Anderson, Opt. Lett. 11, 56 (1986); D. Brady, K. Hsu, D. Psaltis, Opt. Lett. 15, 817 (1990).
    [CrossRef] [PubMed]

1992 (1)

1991 (2)

N. A. Vainos, M. C. Gower, Opt. Lett. 16, 363 (1991).
[CrossRef] [PubMed]

J. P. Wilde, L. Hesselink, R. S. Feigelson, J. Cryst. Growth 113, 337 (1991).
[CrossRef]

1987 (1)

S. Ducharme, J. Feinberg, R. R. Neurgaonkar, IEEE J. Quantum Electron. QE-23, 2116 (1987).
[CrossRef]

1986 (1)

1984 (1)

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

1982 (1)

1965 (1)

H. W. Kogelnik, Bell Syst. Tech. J. 44, 2451 (1965); A. E. T. Chiou, P. Yeh, Opt. Lett. 11, 461 (1986); A. Yariv, Opt. Lett. 16, 1376 (1991).
[CrossRef] [PubMed]

Cronin-Golomb, M.

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

Ducharme, S.

S. Ducharme, J. Feinberg, R. R. Neurgaonkar, IEEE J. Quantum Electron. QE-23, 2116 (1987).
[CrossRef]

Dunning, G. J.

Feigelson, R. S.

J. P. Wilde, L. Hesselink, R. S. Feigelson, J. Cryst. Growth 113, 337 (1991).
[CrossRef]

Feinberg, J.

S. Ducharme, J. Feinberg, R. R. Neurgaonkar, IEEE J. Quantum Electron. QE-23, 2116 (1987).
[CrossRef]

J. Feinberg, Opt. Lett. 7, 486 (1982).
[CrossRef] [PubMed]

Fischer, B.

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

Gower, M. C.

Hesselink, L.

J. P. Wilde, L. Hesselink, R. S. Feigelson, J. Cryst. Growth 113, 337 (1991).
[CrossRef]

Ito, F.

Kitayama, K.-I.

Kogelnik, H. W.

H. W. Kogelnik, Bell Syst. Tech. J. 44, 2451 (1965); A. E. T. Chiou, P. Yeh, Opt. Lett. 11, 461 (1986); A. Yariv, Opt. Lett. 16, 1376 (1991).
[CrossRef] [PubMed]

Marom, E.

Neurgaonkar, R. R.

S. Ducharme, J. Feinberg, R. R. Neurgaonkar, IEEE J. Quantum Electron. QE-23, 2116 (1987).
[CrossRef]

Oguri, H.

Owechko, Y.

Soffer, B. H.

Vainos, N. A.

White, J. O.

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

Wilde, J. P.

J. P. Wilde, L. Hesselink, R. S. Feigelson, J. Cryst. Growth 113, 337 (1991).
[CrossRef]

Yariv, A.

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

Bell Syst. Tech. J. (1)

H. W. Kogelnik, Bell Syst. Tech. J. 44, 2451 (1965); A. E. T. Chiou, P. Yeh, Opt. Lett. 11, 461 (1986); A. Yariv, Opt. Lett. 16, 1376 (1991).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (2)

S. Ducharme, J. Feinberg, R. R. Neurgaonkar, IEEE J. Quantum Electron. QE-23, 2116 (1987).
[CrossRef]

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

J. Cryst. Growth (1)

J. P. Wilde, L. Hesselink, R. S. Feigelson, J. Cryst. Growth 113, 337 (1991).
[CrossRef]

Opt. Lett. (4)

Other (1)

P. Günter, J.-P. Huignard, eds., Photorefractive Materials and Their Applications II (Springer-Verlag, Berlin, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Transmitted image of U.S. Air Force resolution target as detected with a CCD camera (480 × 512 pixels) for (a) ordinary-polarized light and (b) extraordinary-polarized light.

Fig. 2
Fig. 2

Holograms of U.S. Air Force resolution target detected by (a) a plane wave counterpropagating to the reference beam and (b) a phase conjugate of the reference beam.

Fig. 3
Fig. 3

Scattering of the signal beam S into S′ and of the reference beam R into R′ owing to striations modeled as simple gratings. In the model both forward-propagating and counterpropagating beams are considered. The forward-propagating and counterpropagating signal beams, for example, have amplitudes AS and BS, respectively.

Fig. 4
Fig. 4

Experimental arrangement for readout using a phase-conjugated reference wave. An argon-ion laser beam (514 nm) is spatially filtered and then split into a reference beam (15 mW/cm2) and a signal beam (0.1 mW/cm2). The image lens (100-mm focal length) generates a Fourier plane within the SBN:61 crystal (5 mm × 5 mm × 5 mm), where the average signal intensity is 100 μW/cm2. The light enters the BaTiO3 crystal at 50° with a spot size of 2.5 mm and power of 0.6 mW.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

n = n 0 + Re [ n S S exp ( i K S S · r ) + n R R exp ( i K R R · r ) ] ,
d d z [ A S B S * ] = i κ n S S [ A S B S * ] + γ A S A R * + B S * B R I 0 [ A R B R * ] + γ A S A R * + B S * B R I 0 [ A R B R * ] ,
d d z [ A S B S * ] = i κ n S S * [ A S B S * ] + γ A S A R * + B S * B R I 0 [ A R B R * ] + γ A S A R * + B S * B R I 0 [ A R B R * ] ,
d d z [ A R B R * ] = i κ n R R [ A R B R * ] ,
d d z [ A R B R * ] = i κ n R R * [ A R B R * ] .
[ A S A S ] = a ( z ) [ A ˜ S A ˜ S ] ,             [ B S * B S * ] = c ( z ) [ A ˜ S A ˜ S ] ,
[ B R * B R * ] = β [ A R A R ] ,
d a d z = γ ( a + β * c ) 1 β 2 + 1 ,
d ( β * c ) d z = γ ( a + β * c ) β 2 β 2 + 1 ,
| c ( 0 ) a ( 0 ) | 2 = [ sinh ( ½ γ L ) cosh ( ½ γ L + ½ ln β 2 ) ] 2 ,

Metrics