Abstract

A long-lived spectral hole at high temperature is observed in SrFCl:Sm. The measured hole lifetimes at 292 and 315 K are approximately 14 days and 16 h, respectively. Thermally induced hole filling is studied by using the time-decay experimental data of the hole area at different temperatures and by assuming a thermally activated process. An average thermal activation energy of 1.2 eV needed for hole filling is deduced.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Menzel, P. Witte, J. Chem. Phys. 87, 6769 (1987).
    [CrossRef]
  2. S. Arnold, C. T. Liu, Opt. Lett. 16, 420 (1991).
    [CrossRef] [PubMed]
  3. J. Zhang, S. Huang, J. Yu, Chin. J. Lumin. 12, 181 (1991) (in Chinese).
  4. R. Jaaniso, H. Bill, Europhys. Lett. 16, 569 (1991).
    [CrossRef]
  5. W. Kohler, J. Meiler, J. Friedrich, Phys. Rev. B 35, 4031 (1987).
    [CrossRef]
  6. R. Jankowiak, R. Richert, H. Bassler, J. Phys. Chem. 89, 4569 (1985).
    [CrossRef]
  7. W. Kohler, J. Friedrich, Phys. Rev. Lett. 59, 2199 (1987).
    [CrossRef] [PubMed]
  8. W. Kohler, J. Friedrich, Phys. Rev. 37, 660 (1988).
  9. A. Elschner, H. Bassler, J. Lumin. 43, 33 (1989).
    [CrossRef]
  10. B. M. Kharlamov, R. I. Personov, L. A. Bykovskaya, Opt. Commun. 12, 191 (1974).
    [CrossRef]
  11. A. Winnacker, R. M. Shelby, R. M. Macfarlane, Opt. Lett. 10, 350 (1985).
    [CrossRef] [PubMed]
  12. J. Zhang, S. Huang, W. Qin, D. Gao, J. Yu, Chin. J. Infrared Millimeter Waves 10, 1 (1991) (in Chinese).
  13. J. Zhang, S. Huang, W. Qin, D. Gao, J. Yu, “Process of persistent spectral hole burning in SrFCl:Sm2+,” J. Lumin. (to be published).
  14. S. Jutamulia, G. M. Storti, W. Seiderman, J. Lindmayer, Proc. Soc. Photo-Opt. Instrum. Eng. 1401, 113 (1990).

1991 (4)

J. Zhang, S. Huang, J. Yu, Chin. J. Lumin. 12, 181 (1991) (in Chinese).

R. Jaaniso, H. Bill, Europhys. Lett. 16, 569 (1991).
[CrossRef]

J. Zhang, S. Huang, W. Qin, D. Gao, J. Yu, Chin. J. Infrared Millimeter Waves 10, 1 (1991) (in Chinese).

S. Arnold, C. T. Liu, Opt. Lett. 16, 420 (1991).
[CrossRef] [PubMed]

1990 (1)

S. Jutamulia, G. M. Storti, W. Seiderman, J. Lindmayer, Proc. Soc. Photo-Opt. Instrum. Eng. 1401, 113 (1990).

1989 (1)

A. Elschner, H. Bassler, J. Lumin. 43, 33 (1989).
[CrossRef]

1988 (1)

W. Kohler, J. Friedrich, Phys. Rev. 37, 660 (1988).

1987 (3)

W. Kohler, J. Friedrich, Phys. Rev. Lett. 59, 2199 (1987).
[CrossRef] [PubMed]

W. Kohler, J. Meiler, J. Friedrich, Phys. Rev. B 35, 4031 (1987).
[CrossRef]

R. Menzel, P. Witte, J. Chem. Phys. 87, 6769 (1987).
[CrossRef]

1985 (2)

A. Winnacker, R. M. Shelby, R. M. Macfarlane, Opt. Lett. 10, 350 (1985).
[CrossRef] [PubMed]

R. Jankowiak, R. Richert, H. Bassler, J. Phys. Chem. 89, 4569 (1985).
[CrossRef]

1974 (1)

B. M. Kharlamov, R. I. Personov, L. A. Bykovskaya, Opt. Commun. 12, 191 (1974).
[CrossRef]

Arnold, S.

Bassler, H.

A. Elschner, H. Bassler, J. Lumin. 43, 33 (1989).
[CrossRef]

R. Jankowiak, R. Richert, H. Bassler, J. Phys. Chem. 89, 4569 (1985).
[CrossRef]

Bill, H.

R. Jaaniso, H. Bill, Europhys. Lett. 16, 569 (1991).
[CrossRef]

Bykovskaya, L. A.

B. M. Kharlamov, R. I. Personov, L. A. Bykovskaya, Opt. Commun. 12, 191 (1974).
[CrossRef]

Elschner, A.

A. Elschner, H. Bassler, J. Lumin. 43, 33 (1989).
[CrossRef]

Friedrich, J.

W. Kohler, J. Friedrich, Phys. Rev. 37, 660 (1988).

W. Kohler, J. Meiler, J. Friedrich, Phys. Rev. B 35, 4031 (1987).
[CrossRef]

W. Kohler, J. Friedrich, Phys. Rev. Lett. 59, 2199 (1987).
[CrossRef] [PubMed]

Gao, D.

J. Zhang, S. Huang, W. Qin, D. Gao, J. Yu, Chin. J. Infrared Millimeter Waves 10, 1 (1991) (in Chinese).

J. Zhang, S. Huang, W. Qin, D. Gao, J. Yu, “Process of persistent spectral hole burning in SrFCl:Sm2+,” J. Lumin. (to be published).

Huang, S.

J. Zhang, S. Huang, J. Yu, Chin. J. Lumin. 12, 181 (1991) (in Chinese).

J. Zhang, S. Huang, W. Qin, D. Gao, J. Yu, Chin. J. Infrared Millimeter Waves 10, 1 (1991) (in Chinese).

J. Zhang, S. Huang, W. Qin, D. Gao, J. Yu, “Process of persistent spectral hole burning in SrFCl:Sm2+,” J. Lumin. (to be published).

Jaaniso, R.

R. Jaaniso, H. Bill, Europhys. Lett. 16, 569 (1991).
[CrossRef]

Jankowiak, R.

R. Jankowiak, R. Richert, H. Bassler, J. Phys. Chem. 89, 4569 (1985).
[CrossRef]

Jutamulia, S.

S. Jutamulia, G. M. Storti, W. Seiderman, J. Lindmayer, Proc. Soc. Photo-Opt. Instrum. Eng. 1401, 113 (1990).

Kharlamov, B. M.

B. M. Kharlamov, R. I. Personov, L. A. Bykovskaya, Opt. Commun. 12, 191 (1974).
[CrossRef]

Kohler, W.

W. Kohler, J. Friedrich, Phys. Rev. 37, 660 (1988).

W. Kohler, J. Friedrich, Phys. Rev. Lett. 59, 2199 (1987).
[CrossRef] [PubMed]

W. Kohler, J. Meiler, J. Friedrich, Phys. Rev. B 35, 4031 (1987).
[CrossRef]

Lindmayer, J.

S. Jutamulia, G. M. Storti, W. Seiderman, J. Lindmayer, Proc. Soc. Photo-Opt. Instrum. Eng. 1401, 113 (1990).

Liu, C. T.

Macfarlane, R. M.

Meiler, J.

W. Kohler, J. Meiler, J. Friedrich, Phys. Rev. B 35, 4031 (1987).
[CrossRef]

Menzel, R.

R. Menzel, P. Witte, J. Chem. Phys. 87, 6769 (1987).
[CrossRef]

Personov, R. I.

B. M. Kharlamov, R. I. Personov, L. A. Bykovskaya, Opt. Commun. 12, 191 (1974).
[CrossRef]

Qin, W.

J. Zhang, S. Huang, W. Qin, D. Gao, J. Yu, Chin. J. Infrared Millimeter Waves 10, 1 (1991) (in Chinese).

J. Zhang, S. Huang, W. Qin, D. Gao, J. Yu, “Process of persistent spectral hole burning in SrFCl:Sm2+,” J. Lumin. (to be published).

Richert, R.

R. Jankowiak, R. Richert, H. Bassler, J. Phys. Chem. 89, 4569 (1985).
[CrossRef]

Seiderman, W.

S. Jutamulia, G. M. Storti, W. Seiderman, J. Lindmayer, Proc. Soc. Photo-Opt. Instrum. Eng. 1401, 113 (1990).

Shelby, R. M.

Storti, G. M.

S. Jutamulia, G. M. Storti, W. Seiderman, J. Lindmayer, Proc. Soc. Photo-Opt. Instrum. Eng. 1401, 113 (1990).

Winnacker, A.

Witte, P.

R. Menzel, P. Witte, J. Chem. Phys. 87, 6769 (1987).
[CrossRef]

Yu, J.

J. Zhang, S. Huang, J. Yu, Chin. J. Lumin. 12, 181 (1991) (in Chinese).

J. Zhang, S. Huang, W. Qin, D. Gao, J. Yu, Chin. J. Infrared Millimeter Waves 10, 1 (1991) (in Chinese).

J. Zhang, S. Huang, W. Qin, D. Gao, J. Yu, “Process of persistent spectral hole burning in SrFCl:Sm2+,” J. Lumin. (to be published).

Zhang, J.

J. Zhang, S. Huang, J. Yu, Chin. J. Lumin. 12, 181 (1991) (in Chinese).

J. Zhang, S. Huang, W. Qin, D. Gao, J. Yu, Chin. J. Infrared Millimeter Waves 10, 1 (1991) (in Chinese).

J. Zhang, S. Huang, W. Qin, D. Gao, J. Yu, “Process of persistent spectral hole burning in SrFCl:Sm2+,” J. Lumin. (to be published).

Chin. J. Infrared Millimeter Waves (1)

J. Zhang, S. Huang, W. Qin, D. Gao, J. Yu, Chin. J. Infrared Millimeter Waves 10, 1 (1991) (in Chinese).

Chin. J. Lumin. (1)

J. Zhang, S. Huang, J. Yu, Chin. J. Lumin. 12, 181 (1991) (in Chinese).

Europhys. Lett. (1)

R. Jaaniso, H. Bill, Europhys. Lett. 16, 569 (1991).
[CrossRef]

J. Chem. Phys. (1)

R. Menzel, P. Witte, J. Chem. Phys. 87, 6769 (1987).
[CrossRef]

J. Lumin. (1)

A. Elschner, H. Bassler, J. Lumin. 43, 33 (1989).
[CrossRef]

J. Phys. Chem. (1)

R. Jankowiak, R. Richert, H. Bassler, J. Phys. Chem. 89, 4569 (1985).
[CrossRef]

Opt. Commun. (1)

B. M. Kharlamov, R. I. Personov, L. A. Bykovskaya, Opt. Commun. 12, 191 (1974).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. (1)

W. Kohler, J. Friedrich, Phys. Rev. 37, 660 (1988).

Phys. Rev. B (1)

W. Kohler, J. Meiler, J. Friedrich, Phys. Rev. B 35, 4031 (1987).
[CrossRef]

Phys. Rev. Lett. (1)

W. Kohler, J. Friedrich, Phys. Rev. Lett. 59, 2199 (1987).
[CrossRef] [PubMed]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

S. Jutamulia, G. M. Storti, W. Seiderman, J. Lindmayer, Proc. Soc. Photo-Opt. Instrum. Eng. 1401, 113 (1990).

Other (1)

J. Zhang, S. Huang, W. Qin, D. Gao, J. Yu, “Process of persistent spectral hole burning in SrFCl:Sm2+,” J. Lumin. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

7F05D2 transition profiles of Sm2+ in SrFCl before (curve a) and after (curve b) burning a hole at 77 K.

Fig. 2
Fig. 2

7F05D2 transition profiles of Sm2+ in SrFCl before (curve a) and after (curve b) burning a hole at room temperature.

Fig. 3
Fig. 3

Calculated time-decay curves of the normalized area of a hole burnt at 77 K as a function of annealing temperature at 350 K (curve a), 333 K (curve b), 315 K (curve c), 292 K (curve d), and 273 K (curve e). The solid and dashed curves correspond to a Gaussian and a V−1/2 distribution of barrier heights, respectively. For comparison two sets of time-decay experimental data points have been included.

Fig. 4
Fig. 4

Comparison of 292-K data from Fig. 3 with calculated curves for R0 = 1015 s−1 (curve a), 5 × 1014 s−1 (curve b), and 1014 s−1 (curve c). The solid and dashed curves are given by a Gaussian and a V−1/2 distribution function, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R = R 0 exp ( - V / k T ) ,
g ( V ) = ( 2 π σ 2 ) - 1 / 2 exp [ - ( V - V 0 ) 2 / 2 σ 2 ] ,
g ( V ) = g 0 / V 1 / 2 ,
A = - + [ exp ( - R t ) ] g ( V ) d V .
- + V g ( V ) d V .

Metrics