Abstract

Distributed-feedback structures may provide the increased dispersion required for soliton switching when materials with increased nonlinearity become available. Over the bandwidth of the pulses used, the structure will have to appear matched to the input and output. The matching of such a distributed-feedback structure with uniform grating sections of the same periodicity preceding and following it is investigated. The matching method may find other applications.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. N. Islam, Opt. Lett. 14, 1257 (1989).
    [CrossRef] [PubMed]
  2. J. D. Moores, K. Bergman, H. A. Haus, E. P. Ippen, J. Opt. Soc. Am. B 8, 594 (1991).
    [CrossRef]
  3. H. Avramopoulos, P. M. W. French, M. C. Gabriel, H. H. Houk, N. A. Whitaker, T. Morse, IEEE Photon. Technol. Lett. 3, 235 (1991).
    [CrossRef]
  4. W. Chen, D. L. Mills, Phys. Rev. Lett. 58, 160 (1987).
    [CrossRef] [PubMed]
  5. J. D. Moores, K. Bergman, H. A. Haus, E. P. Ippen, J. Opt. Soc. Am. B 8, 594 (1991).
    [CrossRef]
  6. H. Kogelnik, C. V. Shank, J. Appl. Phys. 63, 2328 (1972).
  7. H. A. Haus, Electron. Lett. 11, 553 (1975).
    [CrossRef]
  8. H. Hilmer, S. Hansmann, H. Burkhard, Appl. Phys. Lett. 57, 534 (1990).
    [CrossRef]

1991 (3)

1990 (1)

H. Hilmer, S. Hansmann, H. Burkhard, Appl. Phys. Lett. 57, 534 (1990).
[CrossRef]

1989 (1)

1987 (1)

W. Chen, D. L. Mills, Phys. Rev. Lett. 58, 160 (1987).
[CrossRef] [PubMed]

1975 (1)

H. A. Haus, Electron. Lett. 11, 553 (1975).
[CrossRef]

1972 (1)

H. Kogelnik, C. V. Shank, J. Appl. Phys. 63, 2328 (1972).

Avramopoulos, H.

H. Avramopoulos, P. M. W. French, M. C. Gabriel, H. H. Houk, N. A. Whitaker, T. Morse, IEEE Photon. Technol. Lett. 3, 235 (1991).
[CrossRef]

Bergman, K.

Burkhard, H.

H. Hilmer, S. Hansmann, H. Burkhard, Appl. Phys. Lett. 57, 534 (1990).
[CrossRef]

Chen, W.

W. Chen, D. L. Mills, Phys. Rev. Lett. 58, 160 (1987).
[CrossRef] [PubMed]

French, P. M. W.

H. Avramopoulos, P. M. W. French, M. C. Gabriel, H. H. Houk, N. A. Whitaker, T. Morse, IEEE Photon. Technol. Lett. 3, 235 (1991).
[CrossRef]

Gabriel, M. C.

H. Avramopoulos, P. M. W. French, M. C. Gabriel, H. H. Houk, N. A. Whitaker, T. Morse, IEEE Photon. Technol. Lett. 3, 235 (1991).
[CrossRef]

Hansmann, S.

H. Hilmer, S. Hansmann, H. Burkhard, Appl. Phys. Lett. 57, 534 (1990).
[CrossRef]

Haus, H. A.

Hilmer, H.

H. Hilmer, S. Hansmann, H. Burkhard, Appl. Phys. Lett. 57, 534 (1990).
[CrossRef]

Houk, H. H.

H. Avramopoulos, P. M. W. French, M. C. Gabriel, H. H. Houk, N. A. Whitaker, T. Morse, IEEE Photon. Technol. Lett. 3, 235 (1991).
[CrossRef]

Ippen, E. P.

Islam, M. N.

Kogelnik, H.

H. Kogelnik, C. V. Shank, J. Appl. Phys. 63, 2328 (1972).

Mills, D. L.

W. Chen, D. L. Mills, Phys. Rev. Lett. 58, 160 (1987).
[CrossRef] [PubMed]

Moores, J. D.

Morse, T.

H. Avramopoulos, P. M. W. French, M. C. Gabriel, H. H. Houk, N. A. Whitaker, T. Morse, IEEE Photon. Technol. Lett. 3, 235 (1991).
[CrossRef]

Shank, C. V.

H. Kogelnik, C. V. Shank, J. Appl. Phys. 63, 2328 (1972).

Whitaker, N. A.

H. Avramopoulos, P. M. W. French, M. C. Gabriel, H. H. Houk, N. A. Whitaker, T. Morse, IEEE Photon. Technol. Lett. 3, 235 (1991).
[CrossRef]

Appl. Phys. Lett. (1)

H. Hilmer, S. Hansmann, H. Burkhard, Appl. Phys. Lett. 57, 534 (1990).
[CrossRef]

Electron. Lett. (1)

H. A. Haus, Electron. Lett. 11, 553 (1975).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Avramopoulos, P. M. W. French, M. C. Gabriel, H. H. Houk, N. A. Whitaker, T. Morse, IEEE Photon. Technol. Lett. 3, 235 (1991).
[CrossRef]

J. Appl. Phys. (1)

H. Kogelnik, C. V. Shank, J. Appl. Phys. 63, 2328 (1972).

J. Opt. Soc. Am. B (2)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

W. Chen, D. L. Mills, Phys. Rev. Lett. 58, 160 (1987).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the grating structure.

Fig. 2
Fig. 2

Smith chart transformation for grating structures.

Fig. 3
Fig. 3

Magnitude of the reflection coefficient as a function of detuning: δ0/κ = 3, κL = 113.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

d R d x = - j δ R + j κ S ,
d S d x = j δ S - j κ R ,
δ = ω - ω 0 v g ,
β = δ 2 - κ 2 .
Γ = - j sin β x + β κ Γ 0 cos β x + j δ κ Γ 0 sin β x β κ cos β x - j δ κ sin β x + j Γ 0 sin β x .
Γ = δ - β κ .
Γ = | δ - β κ | .
β l = sin - 1 β κ δ - β κ 1 - ( δ - β ) 2 κ 2 .
ϕ 0 = π 2 - tan - 1 [ ( δ β ) tan β l ] .
1 2 1 τ 2 β L π .
β = - 1 v g 2 κ 2 δ 2 - κ 2 3 ,
β = 1 v g 3 3 κ 2 δ δ 2 - κ 2 5 .
| 2 π τ β β | = 2 κ τ v g 1 δ 0 2 κ 2 - 1 1.

Metrics