Abstract

We show that under the combined effects of stimulated Raman scattering and loss, the pump and Stokes waves can form a bright–dark solitary wave pair. Our analysis takes into account dispersive and walk-off effects as processes of self-phase modulation and cross-phase modulation. The physical origin of this formation is discussed.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, Orlando, Fla., 1989).
  2. D. Schadt, B. Jaskorzynska, J. Opt. Soc. Am. B 4, 856 (1987).
    [CrossRef]
  3. V. A. Vysloukh, V. N. Serkin, Izv. Akad. Nauk SSSR Ser. Fiz. 48, 1777 (1984).
  4. B. Malomed, D. Anderson, M. Lisak, Opt. Lett. 16, 1832 (1991).
    [CrossRef] [PubMed]
  5. A. Höök, D. Anderson, M. Lisak, Opt. Lett. 13, 1114 (1988).
    [CrossRef] [PubMed]
  6. D. N. Christodoulides, R. I. Joseph, IEEE J. Quantum Electron. 25, 273 (1989).
    [CrossRef]
  7. A. Höök, D. Anderson, M. Lisak, J. Opt. Soc. Am. B 6, 1851 (1989).
    [CrossRef]
  8. S. Trillo, S. Wabnitz, E. M. Wright, G. I. Stegeman, Opt. Lett. 13, 871 (1988).
    [CrossRef] [PubMed]
  9. V. Afanasjev, E. M. Dianov, V. N. Serkin, IEEE J. Quantum Electron. 25, 2656 (1989).
    [CrossRef]
  10. B. A. Bélanger, L. Gagnon, C. Paré, Opt. Lett. 14, 943 (1989).
    [CrossRef] [PubMed]
  11. A. Höök, Opt. Lett. 17, 115 (1992).
    [CrossRef] [PubMed]

1992 (1)

1991 (1)

1989 (4)

A. Höök, D. Anderson, M. Lisak, J. Opt. Soc. Am. B 6, 1851 (1989).
[CrossRef]

B. A. Bélanger, L. Gagnon, C. Paré, Opt. Lett. 14, 943 (1989).
[CrossRef] [PubMed]

D. N. Christodoulides, R. I. Joseph, IEEE J. Quantum Electron. 25, 273 (1989).
[CrossRef]

V. Afanasjev, E. M. Dianov, V. N. Serkin, IEEE J. Quantum Electron. 25, 2656 (1989).
[CrossRef]

1988 (2)

1987 (1)

1984 (1)

V. A. Vysloukh, V. N. Serkin, Izv. Akad. Nauk SSSR Ser. Fiz. 48, 1777 (1984).

Afanasjev, V.

V. Afanasjev, E. M. Dianov, V. N. Serkin, IEEE J. Quantum Electron. 25, 2656 (1989).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Orlando, Fla., 1989).

Anderson, D.

Bélanger, B. A.

Christodoulides, D. N.

D. N. Christodoulides, R. I. Joseph, IEEE J. Quantum Electron. 25, 273 (1989).
[CrossRef]

Dianov, E. M.

V. Afanasjev, E. M. Dianov, V. N. Serkin, IEEE J. Quantum Electron. 25, 2656 (1989).
[CrossRef]

Gagnon, L.

Höök, A.

Jaskorzynska, B.

Joseph, R. I.

D. N. Christodoulides, R. I. Joseph, IEEE J. Quantum Electron. 25, 273 (1989).
[CrossRef]

Lisak, M.

Malomed, B.

Paré, C.

Schadt, D.

Serkin, V. N.

V. Afanasjev, E. M. Dianov, V. N. Serkin, IEEE J. Quantum Electron. 25, 2656 (1989).
[CrossRef]

V. A. Vysloukh, V. N. Serkin, Izv. Akad. Nauk SSSR Ser. Fiz. 48, 1777 (1984).

Stegeman, G. I.

Trillo, S.

Vysloukh, V. A.

V. A. Vysloukh, V. N. Serkin, Izv. Akad. Nauk SSSR Ser. Fiz. 48, 1777 (1984).

Wabnitz, S.

Wright, E. M.

IEEE J. Quantum Electron. (2)

D. N. Christodoulides, R. I. Joseph, IEEE J. Quantum Electron. 25, 273 (1989).
[CrossRef]

V. Afanasjev, E. M. Dianov, V. N. Serkin, IEEE J. Quantum Electron. 25, 2656 (1989).
[CrossRef]

Izv. Akad. Nauk SSSR Ser. Fiz. (1)

V. A. Vysloukh, V. N. Serkin, Izv. Akad. Nauk SSSR Ser. Fiz. 48, 1777 (1984).

J. Opt. Soc. Am. B (2)

Opt. Lett. (5)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Orlando, Fla., 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (12)

Equations on this page are rendered with MathJax. Learn more.

i U x + U τ τ + i γ U + 2 [ U 2 + V 2 ( 2 - i Γ 2 ) ] U = 0 , i V x - i δ V τ - β V τ τ + 2 α [ V 2 + U 2 ( 2 + i Γ 2 ) ] V = 0 ,
U = U ^ exp { i [ ( a - μ 2 4 ) x - μ 2 τ ] } ,
V = V ^ exp ( i { β [ b + ( μ 2 - δ 2 4 β 2 ) ] x + ( μ - δ ) 2 β τ } ) ,
U ^ = A sech ( q ξ ) exp [ i p ln sech ( q ξ ) ] ,
V ^ = B tanh ( q ξ ) exp [ i r ln sech ( q ξ ) ] ,
A 2 = ( 6 γ / Γ ) + ( γ / 2 p ) ( 2 - p 2 ) ,
B 2 = ( 3 γ / Γ ) ,
a = ( γ / p ) ( 1 - p 2 ) + ( 12 γ / Γ ) ,
b = ( 2 γ / p ) { 1 + ( α / β ) [ 12 ( p / Γ ) + 2 - p 2 ] } ,
q 2 = γ / p ,
r = ( α Γ / 6 β ) [ p 2 - 2 - 12 ( p / Γ ) ] ,
[ p 2 - 12 ( p / Γ ) - 2 ] 2 = ( 72 β / α Γ 2 ) [ 2 + ( β / α ) + 9 ( p / Γ ) - p 2 ] .

Metrics