Abstract

We demonstrate the use of stimulated echoes for high-speed phase-modulated signal processing. The specific example chosen here involves the compression of biphase-coded pulses—a technique widely used in radar systems to achieve high range resolution and high signal-to-noise ratios. Experimental results obtained with the 5- and 13-bit Barker codes are presented, along with the measurements of a system’s dynamic range and signal-to-noise enhancement. Advantages of this technique over the existing methods for signal processing are discussed.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. N. Cohen, in Principles of Modern Radar, J. L. Eaves, E. K. Reedy, eds. (Van Nostrand Reinhold, New York, 1987), p. 465.
    [CrossRef]
  2. M. I. Skolnik, Introduction to Radar Systems (McGraw-Hill, New York, 1962).
  3. K. P. Jackson, H. J. Shaw, in Optical Signal Processing, J. L. Horner, ed. (Academic, New York, 1987), p. 431.
  4. A. Bers, J. H. Cafarella, Appl. Phys. Lett. 25, 133 (1974).
    [CrossRef]
  5. C. S. Kino, Proc. IEEE 64, 724 (1976).
    [CrossRef]
  6. N. J. Berg, J. N. Lee, M. W. Casseday, B. J. Udelson, Appl. Opt. 18, 2767 (1979).
    [CrossRef] [PubMed]
  7. Y. S. Bai, W. R. Babbitt, N. W. Carlson, T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
    [CrossRef]
  8. Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Opt. Lett. 11, 724 (1986).
    [CrossRef] [PubMed]
  9. M. K. Kim, R. Kachru, Appl. Opt. 28, 2186 (1989).
    [CrossRef] [PubMed]
  10. S. Kröll, L. E. Jusinski, R. Kachru, Opt. Lett. 16, 517 (1991).
    [CrossRef] [PubMed]
  11. A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975).
  12. M. Mitsunaga, R. Yano, N. Uesugi, Opt. Lett. 16, 1890 (1991).
    [CrossRef] [PubMed]
  13. M. K. Kim, R. Kachru, Opt. Lett. 14, 423 (1989).
    [CrossRef] [PubMed]
  14. W. R. Babbitt, T. W. Mossberg, Opt. Commun. 65, 185 (1988).
    [CrossRef]
  15. R. Yano, M. Mitsunaga, N. Uesugi, Opt. Lett. 16, 1884 (1991).
    [CrossRef] [PubMed]

1991 (3)

1989 (2)

1988 (1)

W. R. Babbitt, T. W. Mossberg, Opt. Commun. 65, 185 (1988).
[CrossRef]

1986 (1)

1984 (1)

Y. S. Bai, W. R. Babbitt, N. W. Carlson, T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[CrossRef]

1979 (1)

1976 (1)

C. S. Kino, Proc. IEEE 64, 724 (1976).
[CrossRef]

1974 (1)

A. Bers, J. H. Cafarella, Appl. Phys. Lett. 25, 133 (1974).
[CrossRef]

Babbitt, W. R.

W. R. Babbitt, T. W. Mossberg, Opt. Commun. 65, 185 (1988).
[CrossRef]

Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Opt. Lett. 11, 724 (1986).
[CrossRef] [PubMed]

Y. S. Bai, W. R. Babbitt, N. W. Carlson, T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[CrossRef]

Bai, Y. S.

Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Opt. Lett. 11, 724 (1986).
[CrossRef] [PubMed]

Y. S. Bai, W. R. Babbitt, N. W. Carlson, T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[CrossRef]

Berg, N. J.

Bers, A.

A. Bers, J. H. Cafarella, Appl. Phys. Lett. 25, 133 (1974).
[CrossRef]

Cafarella, J. H.

A. Bers, J. H. Cafarella, Appl. Phys. Lett. 25, 133 (1974).
[CrossRef]

Carlson, N. W.

Y. S. Bai, W. R. Babbitt, N. W. Carlson, T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[CrossRef]

Casseday, M. W.

Cohen, M. N.

M. N. Cohen, in Principles of Modern Radar, J. L. Eaves, E. K. Reedy, eds. (Van Nostrand Reinhold, New York, 1987), p. 465.
[CrossRef]

Jackson, K. P.

K. P. Jackson, H. J. Shaw, in Optical Signal Processing, J. L. Horner, ed. (Academic, New York, 1987), p. 431.

Jusinski, L. E.

Kachru, R.

Kim, M. K.

Kino, C. S.

C. S. Kino, Proc. IEEE 64, 724 (1976).
[CrossRef]

Kröll, S.

Lee, J. N.

Mitsunaga, M.

Mossberg, T. W.

W. R. Babbitt, T. W. Mossberg, Opt. Commun. 65, 185 (1988).
[CrossRef]

Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Opt. Lett. 11, 724 (1986).
[CrossRef] [PubMed]

Y. S. Bai, W. R. Babbitt, N. W. Carlson, T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[CrossRef]

Shaw, H. J.

K. P. Jackson, H. J. Shaw, in Optical Signal Processing, J. L. Horner, ed. (Academic, New York, 1987), p. 431.

Skolnik, M. I.

M. I. Skolnik, Introduction to Radar Systems (McGraw-Hill, New York, 1962).

Udelson, B. J.

Uesugi, N.

Yano, R.

Yariv, A.

A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975).

Appl. Opt. (2)

Appl. Phys. Lett. (2)

Y. S. Bai, W. R. Babbitt, N. W. Carlson, T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[CrossRef]

A. Bers, J. H. Cafarella, Appl. Phys. Lett. 25, 133 (1974).
[CrossRef]

Opt. Commun. (1)

W. R. Babbitt, T. W. Mossberg, Opt. Commun. 65, 185 (1988).
[CrossRef]

Opt. Lett. (5)

Proc. IEEE (1)

C. S. Kino, Proc. IEEE 64, 724 (1976).
[CrossRef]

Other (4)

M. N. Cohen, in Principles of Modern Radar, J. L. Eaves, E. K. Reedy, eds. (Van Nostrand Reinhold, New York, 1987), p. 465.
[CrossRef]

M. I. Skolnik, Introduction to Radar Systems (McGraw-Hill, New York, 1962).

K. P. Jackson, H. J. Shaw, in Optical Signal Processing, J. L. Horner, ed. (Academic, New York, 1987), p. 431.

A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the experimental setup for demonstrating biphase-coded pulse compression. (b) The temporal sequence of the input and echo pulses. The + in the subpulses represents no phase change, while the − represents a change of π. The reference (Er) and signal (Es) pulses were coded according to the 5-bit Barker code.

Fig. 2
Fig. 2

Experimental results demonstrating the compression of biphase-coded pulses. (a) The transmitted and received pulses were phase modulated according to the 5-bit Barker code with a subpulse width of ~250 ns. (b) The transmitted and received pulses were coded according to the 13-bit code with a subpulse width of ~125 ns.

Fig. 3
Fig. 3

Experimental results demonstrating the compression of a 13-bit return signal buried in noise. Three noise levels with an increment of 10 dB were chosen: (a) a SNR of ~1.1, (b) a 10-dB increase of noise, (c) a 20-dB increase of noise.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E e ( t ) - E 1 * ( ω ) E 2 ( ω ) E 3 ( ω ) exp ( - i ω t ) d ω ,
E e ( t ) E 1 ( t ) E 3 ( t ) .

Metrics