Abstract

Novel waveguide beam splitters and recombiners based on multimode propagation phenomena in hollow step-index waveguides are predicted and demonstrated. The splitter designs are based on symmetrically feeding the fundamental-mode field from a square cross-section waveguide, 2a × 2a, into a multimode rectangular guide, 2a × 2b (b > a). As a result of multimode superposition phenomena, unique transverse-field patterns representing different-order multiway splitting of the input field occur at predictable positions along the rectangular-guide axis. The predictions are verified experimentally at 10.6 μm with hollow dielectric waveguides but are considered to be more widely applicable.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Bryngdahl, J. Opt. Soc. Am. 63, 416 (1973).
    [CrossRef]
  2. R. Ulrich, Opt. Commun. 13, 259 (1975).
    [CrossRef]
  3. R. Ulrich, G. Ankele, Appl. Phys. Lett. 27, 337 (1975).
    [CrossRef]
  4. R. Ulrich, Nouv. Rev. Opt. 6, 253 (1975).
    [CrossRef]
  5. R. Ulrich, T. Kamiya, J. Opt. Soc. Am. 68, 583 (1978).
    [CrossRef]
  6. A. Simon, R. Ulrich, Appl. Phys. Lett. 31, 77 (1977).
    [CrossRef]
  7. L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, E. C. M. Pennings, in Digest of Conference on Integrated Photonics Research (Optical Society of America, Washington, D.C., 1991), paper ThD1.
  8. E. C. M. Pennings, R. J. Deri, in Digest of Conference on Integrated Photonics Research (Optical Society of America, Washington, D.C., 1991), paper ThF1, p. 107.
  9. L. B. Soldano, presented at Seventeenth European Conference on Optical Communications, Paris, September 9–12, 1991.
  10. E. C. M. Pennings, presented at Seventeenth European Conference on Optical Communications, Paris, September 9–12, 1991.
  11. E. C. M. Pennings, Appl. Phys. Lett. 59, 1926 (1991).
    [CrossRef]
  12. R. M. Jenkins, R. W. J. Devereux, “Effect of field regeneration phenomena on the 10.6-μm TEM00 transmission characteristics of a circular cross section hollow-core silica waveguide,” Appl. Opt. (to be published).
    [PubMed]
  13. International patent applicationPCT/GB91/02129 (filed December2, 1991); priority UK patent application9027657.7 (filed December20, 1990).
  14. K. D. Laakmann, W. H. Steier, Appl. Opt. 15, 1334 (1976).
    [CrossRef] [PubMed]
  15. R. M. Jenkins, R. W. J. Devereux, IEEE J. Quantum Electron. QE-21, 1722 (1985).
    [CrossRef]

1991 (1)

E. C. M. Pennings, Appl. Phys. Lett. 59, 1926 (1991).
[CrossRef]

1985 (1)

R. M. Jenkins, R. W. J. Devereux, IEEE J. Quantum Electron. QE-21, 1722 (1985).
[CrossRef]

1978 (1)

1977 (1)

A. Simon, R. Ulrich, Appl. Phys. Lett. 31, 77 (1977).
[CrossRef]

1976 (1)

1975 (3)

R. Ulrich, Opt. Commun. 13, 259 (1975).
[CrossRef]

R. Ulrich, G. Ankele, Appl. Phys. Lett. 27, 337 (1975).
[CrossRef]

R. Ulrich, Nouv. Rev. Opt. 6, 253 (1975).
[CrossRef]

1973 (1)

Ankele, G.

R. Ulrich, G. Ankele, Appl. Phys. Lett. 27, 337 (1975).
[CrossRef]

Bryngdahl, O.

Deri, R. J.

E. C. M. Pennings, R. J. Deri, in Digest of Conference on Integrated Photonics Research (Optical Society of America, Washington, D.C., 1991), paper ThF1, p. 107.

Devereux, R. W. J.

R. M. Jenkins, R. W. J. Devereux, IEEE J. Quantum Electron. QE-21, 1722 (1985).
[CrossRef]

R. M. Jenkins, R. W. J. Devereux, “Effect of field regeneration phenomena on the 10.6-μm TEM00 transmission characteristics of a circular cross section hollow-core silica waveguide,” Appl. Opt. (to be published).
[PubMed]

Jenkins, R. M.

R. M. Jenkins, R. W. J. Devereux, IEEE J. Quantum Electron. QE-21, 1722 (1985).
[CrossRef]

R. M. Jenkins, R. W. J. Devereux, “Effect of field regeneration phenomena on the 10.6-μm TEM00 transmission characteristics of a circular cross section hollow-core silica waveguide,” Appl. Opt. (to be published).
[PubMed]

Kamiya, T.

Laakmann, K. D.

Pennings, E. C. M.

E. C. M. Pennings, Appl. Phys. Lett. 59, 1926 (1991).
[CrossRef]

E. C. M. Pennings, presented at Seventeenth European Conference on Optical Communications, Paris, September 9–12, 1991.

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, E. C. M. Pennings, in Digest of Conference on Integrated Photonics Research (Optical Society of America, Washington, D.C., 1991), paper ThD1.

E. C. M. Pennings, R. J. Deri, in Digest of Conference on Integrated Photonics Research (Optical Society of America, Washington, D.C., 1991), paper ThF1, p. 107.

Simon, A.

A. Simon, R. Ulrich, Appl. Phys. Lett. 31, 77 (1977).
[CrossRef]

Smit, M. K.

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, E. C. M. Pennings, in Digest of Conference on Integrated Photonics Research (Optical Society of America, Washington, D.C., 1991), paper ThD1.

Soldano, L. B.

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, E. C. M. Pennings, in Digest of Conference on Integrated Photonics Research (Optical Society of America, Washington, D.C., 1991), paper ThD1.

L. B. Soldano, presented at Seventeenth European Conference on Optical Communications, Paris, September 9–12, 1991.

Steier, W. H.

Ulrich, R.

R. Ulrich, T. Kamiya, J. Opt. Soc. Am. 68, 583 (1978).
[CrossRef]

A. Simon, R. Ulrich, Appl. Phys. Lett. 31, 77 (1977).
[CrossRef]

R. Ulrich, Opt. Commun. 13, 259 (1975).
[CrossRef]

R. Ulrich, G. Ankele, Appl. Phys. Lett. 27, 337 (1975).
[CrossRef]

R. Ulrich, Nouv. Rev. Opt. 6, 253 (1975).
[CrossRef]

Veerman, F. B.

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, E. C. M. Pennings, in Digest of Conference on Integrated Photonics Research (Optical Society of America, Washington, D.C., 1991), paper ThD1.

Verbeek, B. H.

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, E. C. M. Pennings, in Digest of Conference on Integrated Photonics Research (Optical Society of America, Washington, D.C., 1991), paper ThD1.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

E. C. M. Pennings, Appl. Phys. Lett. 59, 1926 (1991).
[CrossRef]

R. Ulrich, G. Ankele, Appl. Phys. Lett. 27, 337 (1975).
[CrossRef]

A. Simon, R. Ulrich, Appl. Phys. Lett. 31, 77 (1977).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. M. Jenkins, R. W. J. Devereux, IEEE J. Quantum Electron. QE-21, 1722 (1985).
[CrossRef]

J. Opt. Soc. Am. (2)

Nouv. Rev. Opt. (1)

R. Ulrich, Nouv. Rev. Opt. 6, 253 (1975).
[CrossRef]

Opt. Commun. (1)

R. Ulrich, Opt. Commun. 13, 259 (1975).
[CrossRef]

Other (6)

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, E. C. M. Pennings, in Digest of Conference on Integrated Photonics Research (Optical Society of America, Washington, D.C., 1991), paper ThD1.

E. C. M. Pennings, R. J. Deri, in Digest of Conference on Integrated Photonics Research (Optical Society of America, Washington, D.C., 1991), paper ThF1, p. 107.

L. B. Soldano, presented at Seventeenth European Conference on Optical Communications, Paris, September 9–12, 1991.

E. C. M. Pennings, presented at Seventeenth European Conference on Optical Communications, Paris, September 9–12, 1991.

R. M. Jenkins, R. W. J. Devereux, “Effect of field regeneration phenomena on the 10.6-μm TEM00 transmission characteristics of a circular cross section hollow-core silica waveguide,” Appl. Opt. (to be published).
[PubMed]

International patent applicationPCT/GB91/02129 (filed December2, 1991); priority UK patent application9027657.7 (filed December20, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of a one- to two-way MMP splitter in hollow waveguide technology.

Fig. 2
Fig. 2

Predicted transverse-field intensity profiles in a lossless hollow rectangular guide, 2a × 2b, where b = 6a, as a function of distance from the rectangular-guide entrance after the symmetric injection of a fundamental-mode field from a square guide, 2a × 2a.

Fig. 3
Fig. 3

Measured output-beam profile from a hollow rectangular waveguide of length 4b2/λ illustrating regeneration of the input field.

Fig. 4
Fig. 4

Measured output-beam profile from a hollow rectangular waveguide of length 2b2/λ illustrating two-way splitting of the input field.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

EH 11 sq = A m n EH m n rec exp ( i γ m n z ) ,
E L = A m n EH m n rec exp ( i γ m n z ) ,
L min = 4 b 2 s λ = ( 2 b ) 2 s λ .
y s = - b + b s [ 2 ( n - 1 ) + 1 ] ,

Metrics