Abstract

The effect of internal scattering on resonant emission structure was studied in 20-μm-diameter droplets. Internal scattering was controlled by varying the concentration of 87-nm-diameter polystyrene spheres in a Rhodamine 6G/water/ethanol solution. Results are interpreted in terms of a scattering-induced output coupling enhancement and consequent cavity Q degradation.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.-M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, Opt. Lett. 9, 499 (1984).
    [CrossRef] [PubMed]
  2. S. C. Hill, R. E. Benner, J. Opt. Soc. Am. B 3, 1509 (1986).
    [CrossRef]
  3. S. C. Ching, H. M. Lai, K. Young, J. Opt. Soc. Am. B 4, 1995 (1987).S. C. Ching, H. M. Lai, K. Young, J. Opt. Soc. Am. B 4, 2004 (1987).
    [CrossRef]
  4. P. Chýlek, J. Opt. Soc. Am. 66, 285 (1976); P. Chýlek, J. T. Kiehl, M. K. W. Ko, Phys. Rev. A 18, 2229 (1978).
    [CrossRef]
  5. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  6. R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, Phys. Rev. Lett. 44, 475 (1980).
    [CrossRef]
  7. P. Chýlek, H.-B. Lin, J. D. Eversole, A. J. Campillo, Opt. Lett. 16, 1723 (1991).
    [CrossRef] [PubMed]
  8. H. M. Lai, P. T. Leung, K. Young, Phys. Rev. A 41, 5199 (1990).
    [CrossRef] [PubMed]
  9. H.-B. Lin, J. D. Eversole, A. J. Campillo, Rev. Sci. Instrum. 61, 1018 (1990).
    [CrossRef]
  10. J. D. Eversole, H.-B. Lin, A. J. Campillo, Appl. Opt. 31, 1982 (1992).
    [CrossRef] [PubMed]

1992 (1)

1991 (1)

1990 (2)

H. M. Lai, P. T. Leung, K. Young, Phys. Rev. A 41, 5199 (1990).
[CrossRef] [PubMed]

H.-B. Lin, J. D. Eversole, A. J. Campillo, Rev. Sci. Instrum. 61, 1018 (1990).
[CrossRef]

1987 (1)

1986 (1)

1984 (1)

1980 (1)

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, Phys. Rev. Lett. 44, 475 (1980).
[CrossRef]

1976 (1)

Barber, P. W.

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, Phys. Rev. Lett. 44, 475 (1980).
[CrossRef]

Benner, R. E.

S. C. Hill, R. E. Benner, J. Opt. Soc. Am. B 3, 1509 (1986).
[CrossRef]

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, Phys. Rev. Lett. 44, 475 (1980).
[CrossRef]

Campillo, A. J.

Chang, R. K.

H.-M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, Opt. Lett. 9, 499 (1984).
[CrossRef] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, Phys. Rev. Lett. 44, 475 (1980).
[CrossRef]

Ching, S. C.

Chýlek, P.

Eversole, J. D.

Hill, S. C.

Lai, H. M.

Leung, P. T.

H. M. Lai, P. T. Leung, K. Young, Phys. Rev. A 41, 5199 (1990).
[CrossRef] [PubMed]

Lin, H.-B.

Long, M. B.

Owen, J. F.

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, Phys. Rev. Lett. 44, 475 (1980).
[CrossRef]

Tzeng, H.-M.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

Wall, K. F.

Young, K.

Appl. Opt. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

Opt. Lett. (2)

Phys. Rev. A (1)

H. M. Lai, P. T. Leung, K. Young, Phys. Rev. A 41, 5199 (1990).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, Phys. Rev. Lett. 44, 475 (1980).
[CrossRef]

Rev. Sci. Instrum. (1)

H.-B. Lin, J. D. Eversole, A. J. Campillo, Rev. Sci. Instrum. 61, 1018 (1990).
[CrossRef]

Other (1)

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

A micrometer-sized droplet acts as a high-Q optical cavity and restricts allowed photon states to spectral regions at wavelengths corresponding to spherical cavity resonances. Molecules lying just below the liquid–air interface are constrained by such cavity QED processes to emit most of their light energy into the resonances. Radiation in each of these resonances may be thought of as composed of two counterpropagating waves traveling near the droplet rim (a). These waves efficiently propagate over long distances, losing energy through tangential coupling (b) to the outside and through absorptive processes. If a small amount of scatterer is introduced within the droplet, light is ejected randomly (c) out of the resonant modes and easily escapes the droplet, thereby increasing the effective output coupling.

Fig. 2
Fig. 2

Emission spectra observed from Rhodamine 6G in 20-.μm ethanol/water droplets. In curve (a) the scattering loss of the solution has been adjusted to 0.3 cm−1 by adding 87-nm-diameter polystyrene spheres. The absorption is ~0.15 cm−1 at 560 nm. Curve (b) is the corresponding spectrum in the absence of scatterers.

Fig. 3
Fig. 3

Wavelength-integrated fluorescence output as a function of the vibrating-orifice frequency (proportional to droplet size) for solution droplets with α ≈ 0.15 cm−1 and β ≈ 0.3 cm−1 [curve (a)] and α ≈ 0.15 cm−1 and β ≈ 0 cm−1 [curve (b)].

Metrics