Abstract

An optical alignment and tilt-angle measurement technique is presented. The method is noncontacting, easy to use, and has an angular sensitivity of better than 0.01°.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Walker, Electron. Lett. 21, 581 (1985).
    [Crossref]
  2. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), Chap. 7, p. 262.
  3. K. H. Wanser, J. A. Anderson, Appl. Opt. 30, 2422 (1991).
    [Crossref] [PubMed]

1991 (1)

1985 (1)

R. G. Walker, Electron. Lett. 21, 581 (1985).
[Crossref]

Anderson, J. A.

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), Chap. 7, p. 262.

Walker, R. G.

R. G. Walker, Electron. Lett. 21, 581 (1985).
[Crossref]

Wanser, K. H.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), Chap. 7, p. 262.

Appl. Opt. (1)

Electron. Lett. (1)

R. G. Walker, Electron. Lett. 21, 581 (1985).
[Crossref]

Other (1)

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), Chap. 7, p. 262.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Conceptual drawing of Lloyd’s mirror technique and ray diagram.

Fig. 2
Fig. 2

Interference patterns for (a) an aligned line-like light source and the mirror plane and (b) a 0.05° misalignment.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

2 k d sin ( θ ) + π = ( 2 m + 1 ) π ,
sin θ = h ( L 2 + h 2 ) 1 / 2 ,
h = m λ L ( 4 d 2 - m 2 λ 2 ) 1 / 2 .
h d = - 4 m λ L d ( 4 d 2 - m 2 λ 2 ) 3 / 2 .
tan ( ϕ ) = Δ h ( Δ d , m ) l ,

Metrics