Abstract

We demonstrate techniques for reducing the noise at the output of a Brillouin amplifier. This is accomplished by nonlinear postprocessing of the amplified signal and noise in a phase-conjugate mirror. For a case in which the signal channel direction is known, the signal-to-noise ratio is enhanced from 1 at the amplifier output to 104 after processing. Without a priori knowledge of the signal channel, an enhancement in the signal-to-noise ratio from 0.8 to 350 is obtained. This method relies on the speckled diverging nature of the noise emitted from a Brillouin amplifer and on the nonlinear reflectivity of stimulated Brillouin backscatter.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Rogovin, R. Mcgraw, A. Gavrielides, Appl. Phys. Lett. 55, 1937 (1989).
    [CrossRef]
  2. R. Mcgraw, D. Rogovin, Proc. Soc. Photo-Opt. Instrum. Eng. 1220, 100 (1990).
  3. V. I. Bespalov, A. Z. Matveev, G. A. Pasmanik, Radiophys. Quantum Electron. 14, 818 (1987).
  4. A. M. Scott, K. D. Ridley, IEEE J. Quantum Electron. 25, 438 (1989).
    [CrossRef]
  5. S. Sternklar, Y. Glick, S. Jackel, A. Zigler, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1991), p. 52.
  6. S. Sternklar, Y. Glick, S. Jackel, J. Opt. Soc. Am. B. 9, 391 (1992).
    [CrossRef]
  7. S. Jackel, R. Laluz, A. Ludmirsky, Proc. Soc. Photo-Opt. Instrum. Eng. 1038, 521 (1988).
  8. J. Khoury, C. L. Woods, M. Cronin-Golomb, Opt. Lett. 16, 747 (1991).
    [CrossRef] [PubMed]
  9. S. Sternklar, D. Chomsky, S. Jackel, A. Zigler, Opt. Lett. 15, 469 (1990).
    [CrossRef] [PubMed]

1992 (1)

S. Sternklar, Y. Glick, S. Jackel, J. Opt. Soc. Am. B. 9, 391 (1992).
[CrossRef]

1991 (1)

1990 (2)

S. Sternklar, D. Chomsky, S. Jackel, A. Zigler, Opt. Lett. 15, 469 (1990).
[CrossRef] [PubMed]

R. Mcgraw, D. Rogovin, Proc. Soc. Photo-Opt. Instrum. Eng. 1220, 100 (1990).

1989 (2)

D. Rogovin, R. Mcgraw, A. Gavrielides, Appl. Phys. Lett. 55, 1937 (1989).
[CrossRef]

A. M. Scott, K. D. Ridley, IEEE J. Quantum Electron. 25, 438 (1989).
[CrossRef]

1988 (1)

S. Jackel, R. Laluz, A. Ludmirsky, Proc. Soc. Photo-Opt. Instrum. Eng. 1038, 521 (1988).

1987 (1)

V. I. Bespalov, A. Z. Matveev, G. A. Pasmanik, Radiophys. Quantum Electron. 14, 818 (1987).

Bespalov, V. I.

V. I. Bespalov, A. Z. Matveev, G. A. Pasmanik, Radiophys. Quantum Electron. 14, 818 (1987).

Chomsky, D.

Cronin-Golomb, M.

Gavrielides, A.

D. Rogovin, R. Mcgraw, A. Gavrielides, Appl. Phys. Lett. 55, 1937 (1989).
[CrossRef]

Glick, Y.

S. Sternklar, Y. Glick, S. Jackel, J. Opt. Soc. Am. B. 9, 391 (1992).
[CrossRef]

S. Sternklar, Y. Glick, S. Jackel, A. Zigler, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1991), p. 52.

Jackel, S.

S. Sternklar, Y. Glick, S. Jackel, J. Opt. Soc. Am. B. 9, 391 (1992).
[CrossRef]

S. Sternklar, D. Chomsky, S. Jackel, A. Zigler, Opt. Lett. 15, 469 (1990).
[CrossRef] [PubMed]

S. Jackel, R. Laluz, A. Ludmirsky, Proc. Soc. Photo-Opt. Instrum. Eng. 1038, 521 (1988).

S. Sternklar, Y. Glick, S. Jackel, A. Zigler, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1991), p. 52.

Khoury, J.

Laluz, R.

S. Jackel, R. Laluz, A. Ludmirsky, Proc. Soc. Photo-Opt. Instrum. Eng. 1038, 521 (1988).

Ludmirsky, A.

S. Jackel, R. Laluz, A. Ludmirsky, Proc. Soc. Photo-Opt. Instrum. Eng. 1038, 521 (1988).

Matveev, A. Z.

V. I. Bespalov, A. Z. Matveev, G. A. Pasmanik, Radiophys. Quantum Electron. 14, 818 (1987).

Mcgraw, R.

R. Mcgraw, D. Rogovin, Proc. Soc. Photo-Opt. Instrum. Eng. 1220, 100 (1990).

D. Rogovin, R. Mcgraw, A. Gavrielides, Appl. Phys. Lett. 55, 1937 (1989).
[CrossRef]

Pasmanik, G. A.

V. I. Bespalov, A. Z. Matveev, G. A. Pasmanik, Radiophys. Quantum Electron. 14, 818 (1987).

Ridley, K. D.

A. M. Scott, K. D. Ridley, IEEE J. Quantum Electron. 25, 438 (1989).
[CrossRef]

Rogovin, D.

R. Mcgraw, D. Rogovin, Proc. Soc. Photo-Opt. Instrum. Eng. 1220, 100 (1990).

D. Rogovin, R. Mcgraw, A. Gavrielides, Appl. Phys. Lett. 55, 1937 (1989).
[CrossRef]

Scott, A. M.

A. M. Scott, K. D. Ridley, IEEE J. Quantum Electron. 25, 438 (1989).
[CrossRef]

Sternklar, S.

S. Sternklar, Y. Glick, S. Jackel, J. Opt. Soc. Am. B. 9, 391 (1992).
[CrossRef]

S. Sternklar, D. Chomsky, S. Jackel, A. Zigler, Opt. Lett. 15, 469 (1990).
[CrossRef] [PubMed]

S. Sternklar, Y. Glick, S. Jackel, A. Zigler, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1991), p. 52.

Woods, C. L.

Zigler, A.

S. Sternklar, D. Chomsky, S. Jackel, A. Zigler, Opt. Lett. 15, 469 (1990).
[CrossRef] [PubMed]

S. Sternklar, Y. Glick, S. Jackel, A. Zigler, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1991), p. 52.

Appl. Phys. Lett. (1)

D. Rogovin, R. Mcgraw, A. Gavrielides, Appl. Phys. Lett. 55, 1937 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. M. Scott, K. D. Ridley, IEEE J. Quantum Electron. 25, 438 (1989).
[CrossRef]

J. Opt. Soc. Am. B. (1)

S. Sternklar, Y. Glick, S. Jackel, J. Opt. Soc. Am. B. 9, 391 (1992).
[CrossRef]

Opt. Lett. (2)

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

S. Jackel, R. Laluz, A. Ludmirsky, Proc. Soc. Photo-Opt. Instrum. Eng. 1038, 521 (1988).

R. Mcgraw, D. Rogovin, Proc. Soc. Photo-Opt. Instrum. Eng. 1220, 100 (1990).

Radiophys. Quantum Electron. (1)

V. I. Bespalov, A. Z. Matveev, G. A. Pasmanik, Radiophys. Quantum Electron. 14, 818 (1987).

Other (1)

S. Sternklar, Y. Glick, S. Jackel, A. Zigler, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1991), p. 52.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Signal and noise beams leaving the Brillouin amplifier. The amplified signal is in the center of the noise field, approximately the size of a noise speckle. In the signal channel the SNR is 1. The output of the amplifier with no input signal looks almost identical to this.

Fig. 2
Fig. 2

Schematic of the experiment. The pump and signal (Ip and Is) counterpropagate in the CS2 cell after the signal is frequency downshifted in a stimulated-Brillouin-scattering PCM. Option (a) consists of an apertured PCM, so that only the signal channel enters the PCM. In option (b) the amplifer output is focused by lens f and directed upward (out of the plane of the paper) by mirror VM into a vertically held cell Vcell, half filled with CS2 (drawn horizontally for clarity). Detector D2 is in the far field. A’s, apertures; BS, beam splitter; ND, neutral-density filters; pol, polarizer; VBS, variable beam splitter.

Fig. 3
Fig. 3

(a) Output of the PCM as a function of the lens distance form the cell: upper curve, signal plus noise; lower curve, noise. (b) SNR of the PCM output.

Fig. 4
Fig. 4

Signal plus noise after processing: (a) The lens in optimal position; noise is reduced significantly. (b) The lens too far from the PCM; both the noise and signal conjugate back. The diagonal lines are an interferometric artifact of the camera. This figure is magnified by ~3 with respect to Fig. 1.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SNR E s + E n - E n E n ,

Metrics