Abstract

The observation of two-dimensional optical spatial solitons in three-dimensional Kerr media requires the use of a two-beam interference technique to stabilize the nonlinear propagation. It is shown that as the spatial soliton is self-trapped, the two interfering beams attract each other. This intensity-dependent self-deflection has been applied to the shortening of picosecond laser pulses.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. L. Kelley, Phys. Rev. Lett. 15, 1005 (1964).
    [CrossRef]
  2. V. E. Zakharov, A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).
  3. A. Barthelemy, S. Maneuf, C. Froehly, Opt. Commun. 55, 201 (1985).
    [CrossRef]
  4. J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, P. W. E. Smith, Opt. Lett. 15, 471 (1990).
    [CrossRef] [PubMed]
  5. G. R. Allan, S. R. Skinner, D. R. Andersen, A. L. Smirl, Opt. Lett. 16, 156 (1991).
    [PubMed]
  6. J. S. Aitchison, A. M. Weiner, Y. Silberberg, D. E. Leaird, M. K. Oliver, J. L. Jackel, P. W. E. Smith, Opt. Lett. 16, 15 (1991); F. Reynaud, A. Barthelemy, Europhys. Lett. 12, 401 (1990).
    [CrossRef] [PubMed]
  7. M. Shalaby, A. Barthelemy, Opt. Lett. 16, 1472 (1991).
    [CrossRef] [PubMed]
  8. S. Maneuf, R. Desailly, C. Froehly, Opt. Commun. 65, 193 (1988).
    [CrossRef]
  9. V. I. Bespalov, V. I. Talanov, Sov. Phys. JETP Lett. 3, 307 (1966).
  10. A. Barthelemy, B. Colombeau, M. Vampouille, C. Froehly, U.S. patent4,776,678 (1988).
  11. D. H. Reitze, A. M. Weiner, D. E. Leaird, Opt. Lett. 16, 1409 (1991).
    [CrossRef] [PubMed]
  12. Y. Li, D. Y. Chen, L. Yang, R. R. Alfano, Opt. Lett. 16, 483 (1991).
  13. A. Hasegawa, Opt. Lett. 5, 416 (1980).
    [CrossRef] [PubMed]

1991 (5)

1990 (1)

1988 (1)

S. Maneuf, R. Desailly, C. Froehly, Opt. Commun. 65, 193 (1988).
[CrossRef]

1985 (1)

A. Barthelemy, S. Maneuf, C. Froehly, Opt. Commun. 55, 201 (1985).
[CrossRef]

1980 (1)

1972 (1)

V. E. Zakharov, A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).

1966 (1)

V. I. Bespalov, V. I. Talanov, Sov. Phys. JETP Lett. 3, 307 (1966).

1964 (1)

P. L. Kelley, Phys. Rev. Lett. 15, 1005 (1964).
[CrossRef]

Aitchison, J. S.

Alfano, R. R.

Y. Li, D. Y. Chen, L. Yang, R. R. Alfano, Opt. Lett. 16, 483 (1991).

Allan, G. R.

Andersen, D. R.

Barthelemy, A.

M. Shalaby, A. Barthelemy, Opt. Lett. 16, 1472 (1991).
[CrossRef] [PubMed]

A. Barthelemy, S. Maneuf, C. Froehly, Opt. Commun. 55, 201 (1985).
[CrossRef]

A. Barthelemy, B. Colombeau, M. Vampouille, C. Froehly, U.S. patent4,776,678 (1988).

Bespalov, V. I.

V. I. Bespalov, V. I. Talanov, Sov. Phys. JETP Lett. 3, 307 (1966).

Chen, D. Y.

Y. Li, D. Y. Chen, L. Yang, R. R. Alfano, Opt. Lett. 16, 483 (1991).

Colombeau, B.

A. Barthelemy, B. Colombeau, M. Vampouille, C. Froehly, U.S. patent4,776,678 (1988).

Desailly, R.

S. Maneuf, R. Desailly, C. Froehly, Opt. Commun. 65, 193 (1988).
[CrossRef]

Froehly, C.

S. Maneuf, R. Desailly, C. Froehly, Opt. Commun. 65, 193 (1988).
[CrossRef]

A. Barthelemy, S. Maneuf, C. Froehly, Opt. Commun. 55, 201 (1985).
[CrossRef]

A. Barthelemy, B. Colombeau, M. Vampouille, C. Froehly, U.S. patent4,776,678 (1988).

Hasegawa, A.

Jackel, J. L.

Kelley, P. L.

P. L. Kelley, Phys. Rev. Lett. 15, 1005 (1964).
[CrossRef]

Leaird, D. E.

Li, Y.

Y. Li, D. Y. Chen, L. Yang, R. R. Alfano, Opt. Lett. 16, 483 (1991).

Maneuf, S.

S. Maneuf, R. Desailly, C. Froehly, Opt. Commun. 65, 193 (1988).
[CrossRef]

A. Barthelemy, S. Maneuf, C. Froehly, Opt. Commun. 55, 201 (1985).
[CrossRef]

Oliver, M. K.

Reitze, D. H.

Shabat, A. B.

V. E. Zakharov, A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).

Shalaby, M.

Silberberg, Y.

Skinner, S. R.

Smirl, A. L.

Smith, P. W. E.

Talanov, V. I.

V. I. Bespalov, V. I. Talanov, Sov. Phys. JETP Lett. 3, 307 (1966).

Vampouille, M.

A. Barthelemy, B. Colombeau, M. Vampouille, C. Froehly, U.S. patent4,776,678 (1988).

Vogel, E. M.

Weiner, A. M.

Yang, L.

Y. Li, D. Y. Chen, L. Yang, R. R. Alfano, Opt. Lett. 16, 483 (1991).

Zakharov, V. E.

V. E. Zakharov, A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).

Opt. Commun. (2)

A. Barthelemy, S. Maneuf, C. Froehly, Opt. Commun. 55, 201 (1985).
[CrossRef]

S. Maneuf, R. Desailly, C. Froehly, Opt. Commun. 65, 193 (1988).
[CrossRef]

Opt. Lett. (7)

Phys. Rev. Lett. (1)

P. L. Kelley, Phys. Rev. Lett. 15, 1005 (1964).
[CrossRef]

Sov. Phys. JETP (1)

V. E. Zakharov, A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).

Sov. Phys. JETP Lett. (1)

V. I. Bespalov, V. I. Talanov, Sov. Phys. JETP Lett. 3, 307 (1966).

Other (1)

A. Barthelemy, B. Colombeau, M. Vampouille, C. Froehly, U.S. patent4,776,678 (1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic drawing of the beam transverse pattern suitable for the stable trapping of two-dimensional spatial solitons in three-dimensional Kerr material. Input (i) and self-trapped output (o) transverse profiles are shown in the inset (in arbitrary units).

Fig. 2
Fig. 2

Photograph of the output screen of the streak camera (left) that analyzes the temporal evolution of the exiting direction of one of the two beams during the self-trapped propagation of a 30-ps pulse. This recording demonstrates the intensity-dependent deflection. A slit selects the deflected light and provides a Fourier-transform pulse of 6-ps duration (the corresponding spectra are shown at the right). The 0.1-mrad scale corresponds to the input beam plane-wave spectrum width.

Fig. 3
Fig. 3

Refractive-index profiles induced by two tilted Gaussian beams showing the mechanism leading to the beams’ trajectory bending. The transverse profile that is due to the envelope of the two tilted beams’ superposition is drawn as a solid curve for three different longitudinal positions in the linear regime (the interference fringes are ignored). The transverse profile of beam 2 is shown as a dotted curve. In the nonlinear regime the energy tends to escape the regions of low intensity, and the induced refractive-index gradient tends to confine the two beams by bending their trajectories.

Metrics