Abstract

Two super-Gaussian output resonators of orders 4 and 6 have been designed by using the inverse-propagation method for the calculation of the graded-phase feedback mirrors. The graded-phase mirrors were made by using the diamond cutting technique on a copper substrate. An increase of 40% and 50% of monomode energy extraction has been measured compared with that of a semiconfocal resonator of the same dimension in a TEA CO2 laser.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Bélanger, C. Paré, Opt. Lett. 16, 1057 (1991).
    [Crossref] [PubMed]
  2. C. Paré, P. A. Bélanger, IEEE J. Quantum Electron. 28, 355 (1992).
    [Crossref]
  3. C. Paré, P. A. Bélanger, “Graded-phase mirror laser resonator: circular geometry,” IEEE J. Quantum Electron. (to be published).
  4. E. R. McClure, Laser Focus World 27(2), 95 (1991).
  5. D. H. Youden, Laser Focus World 26(2), 105 (1990).
  6. A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).

1992 (1)

C. Paré, P. A. Bélanger, IEEE J. Quantum Electron. 28, 355 (1992).
[Crossref]

1991 (2)

E. R. McClure, Laser Focus World 27(2), 95 (1991).

P. A. Bélanger, C. Paré, Opt. Lett. 16, 1057 (1991).
[Crossref] [PubMed]

1990 (1)

D. H. Youden, Laser Focus World 26(2), 105 (1990).

Bélanger, P. A.

C. Paré, P. A. Bélanger, IEEE J. Quantum Electron. 28, 355 (1992).
[Crossref]

P. A. Bélanger, C. Paré, Opt. Lett. 16, 1057 (1991).
[Crossref] [PubMed]

C. Paré, P. A. Bélanger, “Graded-phase mirror laser resonator: circular geometry,” IEEE J. Quantum Electron. (to be published).

McClure, E. R.

E. R. McClure, Laser Focus World 27(2), 95 (1991).

Paré, C.

C. Paré, P. A. Bélanger, IEEE J. Quantum Electron. 28, 355 (1992).
[Crossref]

P. A. Bélanger, C. Paré, Opt. Lett. 16, 1057 (1991).
[Crossref] [PubMed]

C. Paré, P. A. Bélanger, “Graded-phase mirror laser resonator: circular geometry,” IEEE J. Quantum Electron. (to be published).

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).

Youden, D. H.

D. H. Youden, Laser Focus World 26(2), 105 (1990).

IEEE J. Quantum Electron. (1)

C. Paré, P. A. Bélanger, IEEE J. Quantum Electron. 28, 355 (1992).
[Crossref]

Laser Focus World (2)

E. R. McClure, Laser Focus World 27(2), 95 (1991).

D. H. Youden, Laser Focus World 26(2), 105 (1990).

Opt. Lett. (1)

Other (2)

A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).

C. Paré, P. A. Bélanger, “Graded-phase mirror laser resonator: circular geometry,” IEEE J. Quantum Electron. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic setup showing the TEA CO2 laser (λ = 10.6 μm). C, output coupler; D, detector.

Fig. 2
Fig. 2

Graded-phase mirrors profiles (a) M4 and (b) M6 compared with the spherical profile of mirror M2.

Fig. 3
Fig. 3

(a) Eigenvalues and (b) energy output as a function of the iris aperture for spherical mirror M2 resonator; (c) near-field burn patterns of the output.

Fig. 4
Fig. 4

(a) Eigenvalues and (b) energy output as a function of the iris aperture for custom mirror M4 resonator; (c) near-field burn patterns of the output.

Fig. 5
Fig. 5

(a) Eigenvalues and (b) energy output as a function of the iris aperture for custom mirror M6 resonator; (c) near-field burn patterns of the output.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

M 2 exp ( - r 2.5 ) 2 , M 4 exp ( - r 3.0 ) 4 , M 6 exp ( - r 3.2 ) 6 ,

Metrics