Abstract

The 2.09-μ Ho:YAG 5I75I8 laser transition is intracavity pumped by a Tm:YAG laser. Separate Tm:YAG and Ho:YAG crystals share a single laser cavity, the Tm:YAG crystal is pumped at 785 nm, and the resulting 2.01-μm Tm3+ laser emission pumps the Ho:YAG crystal. The slope efficiency of the 2.09-μm Ho3+ laser output is 42% of the absorbed 785-nm pump power.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Y. Fan, R. L. Byer, IEEE J. Quantum Electron. 24, 895 (1988).
    [CrossRef]
  2. G. J. Kintz, L. Esterowitz, R. Allen, Electron. Lett. 23, 616 (1987).
    [CrossRef]
  3. T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, Opt. Lett. 12, 678 (1987).
    [CrossRef] [PubMed]
  4. T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, IEEE J. Quantum Electron. 24, 924 (1988).
    [CrossRef]
  5. G. Kintz, I. D. Abella, L. Esterowitz, in Proceedings of the International Conference on Lasers ’87 (STS Press, McLean, Va., 1988), p. 398.
  6. T. Y. Fan, R. L. Byer, IEEE J. Quantum Electron. QE-23, 605 (1987).
  7. W. P. Risk, J. Opt. Soc. Am. B 5, 1412 (1988).
    [CrossRef]
  8. R. C. Stoneman, L. Esterowitz, Opt. Lett. 16, 232 (1991).
    [CrossRef] [PubMed]
  9. G. J. Kintz, R. Allen, L. Esterowitz, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), p. 414.
  10. R. C. Stoneman, L. Esterowitz, Opt. Lett. 15, 486 (1990).
    [CrossRef] [PubMed]
  11. D. W. Anthon, T. J. Pier, P. A. Leilabady, in LEOS ’90 Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 1990), p. 519.
  12. V. P. Gapontsev, M. E. Zhabotinskii, A. A. Izyneev, V. B. Kravchenko, Yu. P. Rudnitskii, JETP Lett. 18, 251 (1973).

1991

1990

1988

W. P. Risk, J. Opt. Soc. Am. B 5, 1412 (1988).
[CrossRef]

T. Y. Fan, R. L. Byer, IEEE J. Quantum Electron. 24, 895 (1988).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, IEEE J. Quantum Electron. 24, 924 (1988).
[CrossRef]

1987

T. Y. Fan, R. L. Byer, IEEE J. Quantum Electron. QE-23, 605 (1987).

G. J. Kintz, L. Esterowitz, R. Allen, Electron. Lett. 23, 616 (1987).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, Opt. Lett. 12, 678 (1987).
[CrossRef] [PubMed]

1973

V. P. Gapontsev, M. E. Zhabotinskii, A. A. Izyneev, V. B. Kravchenko, Yu. P. Rudnitskii, JETP Lett. 18, 251 (1973).

Abella, I. D.

G. Kintz, I. D. Abella, L. Esterowitz, in Proceedings of the International Conference on Lasers ’87 (STS Press, McLean, Va., 1988), p. 398.

Allen, R.

G. J. Kintz, L. Esterowitz, R. Allen, Electron. Lett. 23, 616 (1987).
[CrossRef]

G. J. Kintz, R. Allen, L. Esterowitz, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), p. 414.

Anthon, D. W.

D. W. Anthon, T. J. Pier, P. A. Leilabady, in LEOS ’90 Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 1990), p. 519.

Byer, R. L.

T. Y. Fan, R. L. Byer, IEEE J. Quantum Electron. 24, 895 (1988).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, IEEE J. Quantum Electron. 24, 924 (1988).
[CrossRef]

T. Y. Fan, R. L. Byer, IEEE J. Quantum Electron. QE-23, 605 (1987).

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, Opt. Lett. 12, 678 (1987).
[CrossRef] [PubMed]

Esterowitz, L.

R. C. Stoneman, L. Esterowitz, Opt. Lett. 16, 232 (1991).
[CrossRef] [PubMed]

R. C. Stoneman, L. Esterowitz, Opt. Lett. 15, 486 (1990).
[CrossRef] [PubMed]

G. J. Kintz, L. Esterowitz, R. Allen, Electron. Lett. 23, 616 (1987).
[CrossRef]

G. Kintz, I. D. Abella, L. Esterowitz, in Proceedings of the International Conference on Lasers ’87 (STS Press, McLean, Va., 1988), p. 398.

G. J. Kintz, R. Allen, L. Esterowitz, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), p. 414.

Fan, T. Y.

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, IEEE J. Quantum Electron. 24, 924 (1988).
[CrossRef]

T. Y. Fan, R. L. Byer, IEEE J. Quantum Electron. 24, 895 (1988).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, Opt. Lett. 12, 678 (1987).
[CrossRef] [PubMed]

T. Y. Fan, R. L. Byer, IEEE J. Quantum Electron. QE-23, 605 (1987).

Gapontsev, V. P.

V. P. Gapontsev, M. E. Zhabotinskii, A. A. Izyneev, V. B. Kravchenko, Yu. P. Rudnitskii, JETP Lett. 18, 251 (1973).

Huber, G.

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, IEEE J. Quantum Electron. 24, 924 (1988).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, Opt. Lett. 12, 678 (1987).
[CrossRef] [PubMed]

Izyneev, A. A.

V. P. Gapontsev, M. E. Zhabotinskii, A. A. Izyneev, V. B. Kravchenko, Yu. P. Rudnitskii, JETP Lett. 18, 251 (1973).

Kintz, G.

G. Kintz, I. D. Abella, L. Esterowitz, in Proceedings of the International Conference on Lasers ’87 (STS Press, McLean, Va., 1988), p. 398.

Kintz, G. J.

G. J. Kintz, L. Esterowitz, R. Allen, Electron. Lett. 23, 616 (1987).
[CrossRef]

G. J. Kintz, R. Allen, L. Esterowitz, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), p. 414.

Kravchenko, V. B.

V. P. Gapontsev, M. E. Zhabotinskii, A. A. Izyneev, V. B. Kravchenko, Yu. P. Rudnitskii, JETP Lett. 18, 251 (1973).

Leilabady, P. A.

D. W. Anthon, T. J. Pier, P. A. Leilabady, in LEOS ’90 Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 1990), p. 519.

Mitzscherlich, P.

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, IEEE J. Quantum Electron. 24, 924 (1988).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, Opt. Lett. 12, 678 (1987).
[CrossRef] [PubMed]

Pier, T. J.

D. W. Anthon, T. J. Pier, P. A. Leilabady, in LEOS ’90 Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 1990), p. 519.

Risk, W. P.

Rudnitskii, Yu. P.

V. P. Gapontsev, M. E. Zhabotinskii, A. A. Izyneev, V. B. Kravchenko, Yu. P. Rudnitskii, JETP Lett. 18, 251 (1973).

Stoneman, R. C.

Zhabotinskii, M. E.

V. P. Gapontsev, M. E. Zhabotinskii, A. A. Izyneev, V. B. Kravchenko, Yu. P. Rudnitskii, JETP Lett. 18, 251 (1973).

Electron. Lett.

G. J. Kintz, L. Esterowitz, R. Allen, Electron. Lett. 23, 616 (1987).
[CrossRef]

IEEE J. Quantum Electron.

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, IEEE J. Quantum Electron. 24, 924 (1988).
[CrossRef]

T. Y. Fan, R. L. Byer, IEEE J. Quantum Electron. QE-23, 605 (1987).

T. Y. Fan, R. L. Byer, IEEE J. Quantum Electron. 24, 895 (1988).
[CrossRef]

J. Opt. Soc. Am. B

JETP Lett.

V. P. Gapontsev, M. E. Zhabotinskii, A. A. Izyneev, V. B. Kravchenko, Yu. P. Rudnitskii, JETP Lett. 18, 251 (1973).

Opt. Lett.

Other

G. Kintz, I. D. Abella, L. Esterowitz, in Proceedings of the International Conference on Lasers ’87 (STS Press, McLean, Va., 1988), p. 398.

G. J. Kintz, R. Allen, L. Esterowitz, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), p. 414.

D. W. Anthon, T. J. Pier, P. A. Leilabady, in LEOS ’90 Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 1990), p. 519.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Energy-level diagram for the Tm3+, Ho3+ laser system. The usual method of populating the upper state (5I7) of the Ho3+ 2.1-μm laser, through the dipole–dipole interaction between nearby Tm3+ and Ho3+ ions in a codoped crystal, is indicated by the curved arrow. The dashed–dotted arrow indicates direct pumping of the Ho3+ 5I7 state by the 2.01-μm Tm3+ laser.

Fig. 2
Fig. 2

Room-temperature absorption spectrum of 0.5% Ho:YAG (solid curve). The output spectrum of the Tm:YAG laser is split into two peaks (dotted curves) by the Ho:YAG intracavity absorption.

Fig. 3
Fig. 3

Schematic diagram of the 2.09-μm Ho:YAG laser, intracavity pumped by the 2.01-μm Tm:YAG laser. The (optically contacted) Tm:YAG and Ho:YAG crystals share a single laser cavity, defined by the front surface of the Tm:YAG crystal (high reflector for both the Ho3+ and Tm3+ lasers) and the concave mirror (output coupler for the Ho3+ laser and high reflector for the Tm3+ laser). HR, highly reflecting; HT, highly transmitting; AR, antireflecting.

Fig. 4
Fig. 4

2-μm laser output, with the intracavity pumping scheme, versus the absorbed 785-nm pump power. Of the total 2-μm output power, 90% is from the Ho3+ laser at 2.09 μm, and the remaining 10% is leakage of the Tm3+ laser owing to transmission through the concave mirror at 2.01 μm. The slope efficiency of the Ho3+ laser output is 42% of the absorbed 785-nm pump power.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P th N l f 1 τ η a f 2 ,
N l = 1 σ p ln ( 1 1 - η a ) .
P th f 1 τ σ p f 2 [ 1 η a ln ( 1 1 - η a ) ] .
f 1 f 2 = Z 2 Z 1 exp ( 1 / λ - Δ E 0 k T ) ,

Metrics