Abstract

Efficient generation of blue light is demonstrated by using resonantly enhanced sum-frequency mixing in a monolithic KTP resonator. Two infrared sources, a diode-pumped Nd:YAG laser and a GaAlAs laser diode, were simultaneously coupled into the monolithic cavity and tuned to resonant frequencies, so that high-intensity intracavity fields were built up at both wavelengths. A blue power of 4 mW in a TEM00 mode was generated with 55% of the 30 mW of 809-nm power and 45% of the 33 mW of 1064-nm power coupled into the standing-wave nonlinear resonator. By using a novel monolithic ring resonator, 2 mW of power was generated in a TEM00 mode at 462 nm. Electric-field-induced tuning of the resonant frequencies was also demonstrated.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988).
    [Crossref]
  2. W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
    [Crossref]
  3. L. Goldberg, M. Chun, Appl. Phys. Lett. 55, 218 (1989).
    [Crossref]
  4. G. J. Dixon, C. E. Tanner, C. E. Wieman, Opt. Lett. 14, 731 (1989).
    [Crossref] [PubMed]
  5. L. Goldberg, M. K. Chun, I. N. Duling, T. F. Carruthers, Appl. Phys. Lett. 56, 2071 (1990).
    [Crossref]
  6. J. C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, Appl. Phys. Lett. 51, 2192 (1987).
    [Crossref]
  7. W. P. Risk, R. N. Payne, W. Lenth, C. Harder, H. Meier, Appl. Phys. Lett. 55, 1179 (1989).
    [Crossref]
  8. R. C. Eckardt, C. D. Nabors, W. J. Kozlovsky, R. L. Byer, J. Opt. Soc. Am. B 8, 646 (1991).
    [Crossref]
  9. M. G. Roelofs, J. Appl. Phys. 65, 4976 (1989).
    [Crossref]
  10. J. D. Bierlein, C. B. Arweiler, Appl. Phys. Lett. 49, 917 (1986).
    [Crossref]
  11. To the best of our knowledge, the piezoelectric coefficients for KTP have not been reported; however, the piezoelectric coefficient for a similar material, RbTiOPO4, has been reported by I. M. Sil’vestrova, Yu. V. Pisarevskii, V. I. Voronkova, V. K. Yanovskii [Sov. Phys. Crystallogr. 35, 140 (1990)] to be d32 = 3.57 × 10−12 C/N, a value that is not large enough to account for the discrepancy between theory and experiment.

1991 (1)

1990 (3)

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[Crossref]

L. Goldberg, M. K. Chun, I. N. Duling, T. F. Carruthers, Appl. Phys. Lett. 56, 2071 (1990).
[Crossref]

To the best of our knowledge, the piezoelectric coefficients for KTP have not been reported; however, the piezoelectric coefficient for a similar material, RbTiOPO4, has been reported by I. M. Sil’vestrova, Yu. V. Pisarevskii, V. I. Voronkova, V. K. Yanovskii [Sov. Phys. Crystallogr. 35, 140 (1990)] to be d32 = 3.57 × 10−12 C/N, a value that is not large enough to account for the discrepancy between theory and experiment.

1989 (4)

L. Goldberg, M. Chun, Appl. Phys. Lett. 55, 218 (1989).
[Crossref]

G. J. Dixon, C. E. Tanner, C. E. Wieman, Opt. Lett. 14, 731 (1989).
[Crossref] [PubMed]

M. G. Roelofs, J. Appl. Phys. 65, 4976 (1989).
[Crossref]

W. P. Risk, R. N. Payne, W. Lenth, C. Harder, H. Meier, Appl. Phys. Lett. 55, 1179 (1989).
[Crossref]

1988 (1)

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988).
[Crossref]

1987 (1)

J. C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, Appl. Phys. Lett. 51, 2192 (1987).
[Crossref]

1986 (1)

J. D. Bierlein, C. B. Arweiler, Appl. Phys. Lett. 49, 917 (1986).
[Crossref]

Arweiler, C. B.

J. D. Bierlein, C. B. Arweiler, Appl. Phys. Lett. 49, 917 (1986).
[Crossref]

Baumert, J. C.

J. C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, Appl. Phys. Lett. 51, 2192 (1987).
[Crossref]

Bierlein, J. D.

J. D. Bierlein, C. B. Arweiler, Appl. Phys. Lett. 49, 917 (1986).
[Crossref]

Bjorklund, G. C.

J. C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, Appl. Phys. Lett. 51, 2192 (1987).
[Crossref]

Bona, G. L.

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[Crossref]

Byer, R. L.

R. C. Eckardt, C. D. Nabors, W. J. Kozlovsky, R. L. Byer, J. Opt. Soc. Am. B 8, 646 (1991).
[Crossref]

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988).
[Crossref]

Carruthers, T. F.

L. Goldberg, M. K. Chun, I. N. Duling, T. F. Carruthers, Appl. Phys. Lett. 56, 2071 (1990).
[Crossref]

Chun, M.

L. Goldberg, M. Chun, Appl. Phys. Lett. 55, 218 (1989).
[Crossref]

Chun, M. K.

L. Goldberg, M. K. Chun, I. N. Duling, T. F. Carruthers, Appl. Phys. Lett. 56, 2071 (1990).
[Crossref]

Dixon, G. J.

Duling, I. N.

L. Goldberg, M. K. Chun, I. N. Duling, T. F. Carruthers, Appl. Phys. Lett. 56, 2071 (1990).
[Crossref]

Eckardt, R. C.

Goldberg, L.

L. Goldberg, M. K. Chun, I. N. Duling, T. F. Carruthers, Appl. Phys. Lett. 56, 2071 (1990).
[Crossref]

L. Goldberg, M. Chun, Appl. Phys. Lett. 55, 218 (1989).
[Crossref]

Harder, C.

W. P. Risk, R. N. Payne, W. Lenth, C. Harder, H. Meier, Appl. Phys. Lett. 55, 1179 (1989).
[Crossref]

Kozlovsky, W. J.

R. C. Eckardt, C. D. Nabors, W. J. Kozlovsky, R. L. Byer, J. Opt. Soc. Am. B 8, 646 (1991).
[Crossref]

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[Crossref]

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988).
[Crossref]

Latta, E. E.

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[Crossref]

Lenth, W.

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[Crossref]

W. P. Risk, R. N. Payne, W. Lenth, C. Harder, H. Meier, Appl. Phys. Lett. 55, 1179 (1989).
[Crossref]

J. C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, Appl. Phys. Lett. 51, 2192 (1987).
[Crossref]

Meier, H.

W. P. Risk, R. N. Payne, W. Lenth, C. Harder, H. Meier, Appl. Phys. Lett. 55, 1179 (1989).
[Crossref]

Moser, A.

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[Crossref]

Nabors, C. D.

R. C. Eckardt, C. D. Nabors, W. J. Kozlovsky, R. L. Byer, J. Opt. Soc. Am. B 8, 646 (1991).
[Crossref]

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988).
[Crossref]

Payne, R. N.

W. P. Risk, R. N. Payne, W. Lenth, C. Harder, H. Meier, Appl. Phys. Lett. 55, 1179 (1989).
[Crossref]

Pisarevskii, Yu. V.

To the best of our knowledge, the piezoelectric coefficients for KTP have not been reported; however, the piezoelectric coefficient for a similar material, RbTiOPO4, has been reported by I. M. Sil’vestrova, Yu. V. Pisarevskii, V. I. Voronkova, V. K. Yanovskii [Sov. Phys. Crystallogr. 35, 140 (1990)] to be d32 = 3.57 × 10−12 C/N, a value that is not large enough to account for the discrepancy between theory and experiment.

Risk, W. P.

W. P. Risk, R. N. Payne, W. Lenth, C. Harder, H. Meier, Appl. Phys. Lett. 55, 1179 (1989).
[Crossref]

J. C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, Appl. Phys. Lett. 51, 2192 (1987).
[Crossref]

Roelofs, M. G.

M. G. Roelofs, J. Appl. Phys. 65, 4976 (1989).
[Crossref]

Schellenberg, F. M.

J. C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, Appl. Phys. Lett. 51, 2192 (1987).
[Crossref]

Sil’vestrova, I. M.

To the best of our knowledge, the piezoelectric coefficients for KTP have not been reported; however, the piezoelectric coefficient for a similar material, RbTiOPO4, has been reported by I. M. Sil’vestrova, Yu. V. Pisarevskii, V. I. Voronkova, V. K. Yanovskii [Sov. Phys. Crystallogr. 35, 140 (1990)] to be d32 = 3.57 × 10−12 C/N, a value that is not large enough to account for the discrepancy between theory and experiment.

Tanner, C. E.

Voronkova, V. I.

To the best of our knowledge, the piezoelectric coefficients for KTP have not been reported; however, the piezoelectric coefficient for a similar material, RbTiOPO4, has been reported by I. M. Sil’vestrova, Yu. V. Pisarevskii, V. I. Voronkova, V. K. Yanovskii [Sov. Phys. Crystallogr. 35, 140 (1990)] to be d32 = 3.57 × 10−12 C/N, a value that is not large enough to account for the discrepancy between theory and experiment.

Wieman, C. E.

Yanovskii, V. K.

To the best of our knowledge, the piezoelectric coefficients for KTP have not been reported; however, the piezoelectric coefficient for a similar material, RbTiOPO4, has been reported by I. M. Sil’vestrova, Yu. V. Pisarevskii, V. I. Voronkova, V. K. Yanovskii [Sov. Phys. Crystallogr. 35, 140 (1990)] to be d32 = 3.57 × 10−12 C/N, a value that is not large enough to account for the discrepancy between theory and experiment.

Appl. Phys. Lett. (6)

L. Goldberg, M. K. Chun, I. N. Duling, T. F. Carruthers, Appl. Phys. Lett. 56, 2071 (1990).
[Crossref]

J. C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, Appl. Phys. Lett. 51, 2192 (1987).
[Crossref]

W. P. Risk, R. N. Payne, W. Lenth, C. Harder, H. Meier, Appl. Phys. Lett. 55, 1179 (1989).
[Crossref]

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[Crossref]

L. Goldberg, M. Chun, Appl. Phys. Lett. 55, 218 (1989).
[Crossref]

J. D. Bierlein, C. B. Arweiler, Appl. Phys. Lett. 49, 917 (1986).
[Crossref]

IEEE J. Quantum Electron. (1)

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988).
[Crossref]

J. Appl. Phys. (1)

M. G. Roelofs, J. Appl. Phys. 65, 4976 (1989).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Sov. Phys. Crystallogr. (1)

To the best of our knowledge, the piezoelectric coefficients for KTP have not been reported; however, the piezoelectric coefficient for a similar material, RbTiOPO4, has been reported by I. M. Sil’vestrova, Yu. V. Pisarevskii, V. I. Voronkova, V. K. Yanovskii [Sov. Phys. Crystallogr. 35, 140 (1990)] to be d32 = 3.57 × 10−12 C/N, a value that is not large enough to account for the discrepancy between theory and experiment.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental arrangement for the monolithic standing-wave resonator. M’s, mirrors; Col., collimating lens.

Fig. 2
Fig. 2

Slowness curve depiction of bireflection. (a) The case of reflection from a mirror oriented at an angle to the crystallographic axes, (b) the case of reflection from a mirror aligned to the crystallographic axes.

Fig. 3
Fig. 3

Experimental arrangement for the monolithic ring resonator.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ f m = f m ( 1 2 n a 2 r 13 E 3 - d 32 E 3 ) ,

Metrics