Abstract

We monitor the induced phase change produced by a cascaded χ(2):χ(2) process in KTP near the phase-matching angle on a picosecond 1.06-μm-wavelength beam using the Z-scan technique. This nonlinear refraction is observed to change sign as the crystal is rotated through the phase-match angle in accordance with theory. This theory predicts the maximum small-signal effective nonlinear refractive index of n2eff±2×1014 cm2/W (±1 × 10−11 esu) for an angle detuning of ±5° from phase match for this 1-mm-thick crystal with a measured deff of 3.1 pm/V For a fixed phase mismatch, this n2eff scales linearly with length and as deff2; however, for the maximum n2eff the nonlinear phase distortion becomes sublinear with irradiance for phase shifts near π/4.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription