Abstract

We discuss the conditions for the formation, switching, and spatial instability of solitary waves with helical evolution of the polarization in optical fibers with periodic birefringence.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. J. Doran, D. Wood, J. Opt. Soc. Am. B 4, 1843 (1987).
    [CrossRef]
  2. S. Trillo, S. Wabnitz, E. M. Wright, G. I. Stegeman, Opt. Lett. 14, 754 (1988).
  3. D. J. Kaup, A. C. Newell, Proc. R. Soc. London Ser. A 361, 413 (1978).
    [CrossRef]
  4. D. J. Muraki, W. L. Kath, Phys. Lett. A 139, 379 (1989); E. Caglioti, S. Trillo, S. Wabnitz, B. Crosignani, P. Di Porto, J. Opt. Soc. Am. B 7, 374 (1990); B. A. Malomed, Phys. Rev. A 43, 410 (1991).
    [CrossRef] [PubMed]
  5. S. Wabnitz, S. Trillo, E. M. Wright, G. I. Stegeman, J. Opt. Soc. Am. B 8, 602 (1991).
    [CrossRef]
  6. R. H. Stolen, A. Ashkin, W. Pleibel, J. J. Dziedzic, Opt. Lett. 9, 300 (1984).
    [CrossRef] [PubMed]
  7. A. Mecozzi, S. Trillo, S. Wabnitz, B. Daino, Opt. Lett. 12, 275 (1987); S. Trillo, S. Wabnitz, G. I. Stegeman, IEEE J. Quantum Electron. 25, 1907 (1989); S. Trillo, S. Wabnitz, N. Finlayson, W. C. Banyai, C. T. Seaton, G. I. Stegeman, R. H. Stolen, Appl. Phys. Lett. 53, 837 (1988); IEEE J. Quantum Electron. 25, 104 (1989).
    [CrossRef] [PubMed]
  8. D. N. Christodoulides, R. I. Joseph, Phys. Rev. Lett. 62, 1746 (1989); S. Wabnitz, Opt. Lett. 14, 1071 (1989); A. B. Aceves, S. Wabnitz, Phys. Lett. A 141, 37 (1989); C. M. de Sterke, J. E. Sipe, Phys. Rev. A 42, 550 (1990).
    [CrossRef] [PubMed]
  9. S. V. Manakov, Sov. Phys. JETP 38, 248 (1974).
  10. P. A. Belanger, C. Pare, Phys. Rev. A 41, 5254 (1990).
    [CrossRef] [PubMed]
  11. B. Daino, G. Gregori, S. Wabnitz, J. Appl. Phys. 58, 4512 (1985).
    [CrossRef]

1991

1990

P. A. Belanger, C. Pare, Phys. Rev. A 41, 5254 (1990).
[CrossRef] [PubMed]

1989

D. N. Christodoulides, R. I. Joseph, Phys. Rev. Lett. 62, 1746 (1989); S. Wabnitz, Opt. Lett. 14, 1071 (1989); A. B. Aceves, S. Wabnitz, Phys. Lett. A 141, 37 (1989); C. M. de Sterke, J. E. Sipe, Phys. Rev. A 42, 550 (1990).
[CrossRef] [PubMed]

D. J. Muraki, W. L. Kath, Phys. Lett. A 139, 379 (1989); E. Caglioti, S. Trillo, S. Wabnitz, B. Crosignani, P. Di Porto, J. Opt. Soc. Am. B 7, 374 (1990); B. A. Malomed, Phys. Rev. A 43, 410 (1991).
[CrossRef] [PubMed]

1988

1987

1985

B. Daino, G. Gregori, S. Wabnitz, J. Appl. Phys. 58, 4512 (1985).
[CrossRef]

1984

1978

D. J. Kaup, A. C. Newell, Proc. R. Soc. London Ser. A 361, 413 (1978).
[CrossRef]

1974

S. V. Manakov, Sov. Phys. JETP 38, 248 (1974).

Ashkin, A.

Belanger, P. A.

P. A. Belanger, C. Pare, Phys. Rev. A 41, 5254 (1990).
[CrossRef] [PubMed]

Christodoulides, D. N.

D. N. Christodoulides, R. I. Joseph, Phys. Rev. Lett. 62, 1746 (1989); S. Wabnitz, Opt. Lett. 14, 1071 (1989); A. B. Aceves, S. Wabnitz, Phys. Lett. A 141, 37 (1989); C. M. de Sterke, J. E. Sipe, Phys. Rev. A 42, 550 (1990).
[CrossRef] [PubMed]

Daino, B.

Doran, N. J.

Dziedzic, J. J.

Gregori, G.

B. Daino, G. Gregori, S. Wabnitz, J. Appl. Phys. 58, 4512 (1985).
[CrossRef]

Joseph, R. I.

D. N. Christodoulides, R. I. Joseph, Phys. Rev. Lett. 62, 1746 (1989); S. Wabnitz, Opt. Lett. 14, 1071 (1989); A. B. Aceves, S. Wabnitz, Phys. Lett. A 141, 37 (1989); C. M. de Sterke, J. E. Sipe, Phys. Rev. A 42, 550 (1990).
[CrossRef] [PubMed]

Kath, W. L.

D. J. Muraki, W. L. Kath, Phys. Lett. A 139, 379 (1989); E. Caglioti, S. Trillo, S. Wabnitz, B. Crosignani, P. Di Porto, J. Opt. Soc. Am. B 7, 374 (1990); B. A. Malomed, Phys. Rev. A 43, 410 (1991).
[CrossRef] [PubMed]

Kaup, D. J.

D. J. Kaup, A. C. Newell, Proc. R. Soc. London Ser. A 361, 413 (1978).
[CrossRef]

Manakov, S. V.

S. V. Manakov, Sov. Phys. JETP 38, 248 (1974).

Mecozzi, A.

Muraki, D. J.

D. J. Muraki, W. L. Kath, Phys. Lett. A 139, 379 (1989); E. Caglioti, S. Trillo, S. Wabnitz, B. Crosignani, P. Di Porto, J. Opt. Soc. Am. B 7, 374 (1990); B. A. Malomed, Phys. Rev. A 43, 410 (1991).
[CrossRef] [PubMed]

Newell, A. C.

D. J. Kaup, A. C. Newell, Proc. R. Soc. London Ser. A 361, 413 (1978).
[CrossRef]

Pare, C.

P. A. Belanger, C. Pare, Phys. Rev. A 41, 5254 (1990).
[CrossRef] [PubMed]

Pleibel, W.

Stegeman, G. I.

Stolen, R. H.

Trillo, S.

Wabnitz, S.

Wood, D.

Wright, E. M.

J. Appl. Phys.

B. Daino, G. Gregori, S. Wabnitz, J. Appl. Phys. 58, 4512 (1985).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Lett. A

D. J. Muraki, W. L. Kath, Phys. Lett. A 139, 379 (1989); E. Caglioti, S. Trillo, S. Wabnitz, B. Crosignani, P. Di Porto, J. Opt. Soc. Am. B 7, 374 (1990); B. A. Malomed, Phys. Rev. A 43, 410 (1991).
[CrossRef] [PubMed]

Phys. Rev. A

P. A. Belanger, C. Pare, Phys. Rev. A 41, 5254 (1990).
[CrossRef] [PubMed]

Phys. Rev. Lett.

D. N. Christodoulides, R. I. Joseph, Phys. Rev. Lett. 62, 1746 (1989); S. Wabnitz, Opt. Lett. 14, 1071 (1989); A. B. Aceves, S. Wabnitz, Phys. Lett. A 141, 37 (1989); C. M. de Sterke, J. E. Sipe, Phys. Rev. A 42, 550 (1990).
[CrossRef] [PubMed]

Proc. R. Soc. London Ser. A

D. J. Kaup, A. C. Newell, Proc. R. Soc. London Ser. A 361, 413 (1978).
[CrossRef]

Sov. Phys. JETP

S. V. Manakov, Sov. Phys. JETP 38, 248 (1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Contour plot of the intensities of the two components of helical solitons for σ = 0, κ = 1/12, and (a) δ = 0, (b) δ = 0.2, and (c) δ = 0.35. The time is given in the dimensionless units of the t coordinate.

Fig. 2
Fig. 2

Switching from helical to decoupled solitons. Here δ = 0.3, κ = 1/12, σ = 1/3, ν = 0, and (a) η = 2 and (b) η = 1.6. Note that a different intensity scale is used in the u, υ contour plots.

Fig. 3
Fig. 3

Perturbative solution for (a) the fractional power in the input mode and (b) the soliton center τ with η = 1.45 (solid curve) and η = 1.47 (dashed curve).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

i z U + i δ s U + 1 2 s s U + κ V exp ( 2 i ν z ) + [ | U | 2 + ( 1 σ ) V | 2 ] U = 0 ,
i z V i δ s V + 1 2 s s V + κ U exp ( 2 i ν z ) + [ | V | 2 + ( 1 σ ) U | 2 ] V = 0 .
U ( z = 0 , s ) = η sech ( η s ) , V ( z = 0 , s ) = 0 .
u ( v ) = U ( V ) exp [ i z / 2 ( ν 2 / δ 2 δ 2 ) i s ( ν / δ δ ) ] , t = s z ν / δ ,
i z u + 1 2 t t u + ( | u | 2 + | υ | 2 ) u = σ | υ | 2 u κ υ e 2 i δ t , i z υ + 1 2 t t υ + ( | υ | 2 + | u | 2 ) υ = σ | u | 2 υ κ u e 2 i δ t .
u , υ = η p 1 , 2 sech [ η ( t τ ) ] × exp [ i V t + i ϕ 1 , 2 + i z ( η 2 V 2 ) / 2 ] .
y ˙ = β π 1 y 2 sin ( Φ ) , Φ ˙ = π [ 4 η 2 y / 3 + β y cos ( Φ ) / 1 y 2 ] + 12 π δ V , V ˙ = δ y ˙ ,

Metrics