Abstract

Utilization of polarizing optics for dynamic attenuation of intense unpolarized laser beams is reported. The new family of variable attenuator is composed of a retardation plate mounted between two identical polarization splitters placed in tandem. By varying the retardation, or by rotating the plate, the transmission is varied. These attenuators are characterized by a high transmission and a high optical damage threshold. A transmission dynamic range as large as 1 to 10−5 is achievable with polarization splitters made of crystals such as sapphire. These attenuators are applicable in laser material processing and in Q switching of unpolarized lasers.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Bennett, R. L. Byer, Appl. Opt. 19, 2408 (1980).
    [CrossRef] [PubMed]
  2. F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), Chap. 24.
  3. A. Nusbaum, R. A. Phillip, Contemporary Optics for Scientists and Engineers (Prentice-Hall, Englewood Cliffs, N.J., 1976).
  4. W. G. Driscoll, W. Vaughan, Handbook of Optics (McGraw-Hill, New York, 1978).
  5. H. Lotem, U. Laor, Appl. Opt. 25, 1271 (1985).
    [CrossRef]
  6. A. Yariv, Introduction to Optical Engineering (Holt, Rinehart & Winston, New York, 1971), Chap. 9.
  7. C. Shaohuo, IEEE J. Quantum Electron. QE-19, 736 (1983).
    [CrossRef]
  8. The prisms were made by Kerem Optronics, Industrial Zone, Dimona, Israel.

1985 (1)

1983 (1)

C. Shaohuo, IEEE J. Quantum Electron. QE-19, 736 (1983).
[CrossRef]

1980 (1)

Bennett, K.

Byer, R. L.

Driscoll, W. G.

W. G. Driscoll, W. Vaughan, Handbook of Optics (McGraw-Hill, New York, 1978).

Jenkins, F. A.

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), Chap. 24.

Laor, U.

Lotem, H.

Nusbaum, A.

A. Nusbaum, R. A. Phillip, Contemporary Optics for Scientists and Engineers (Prentice-Hall, Englewood Cliffs, N.J., 1976).

Phillip, R. A.

A. Nusbaum, R. A. Phillip, Contemporary Optics for Scientists and Engineers (Prentice-Hall, Englewood Cliffs, N.J., 1976).

Shaohuo, C.

C. Shaohuo, IEEE J. Quantum Electron. QE-19, 736 (1983).
[CrossRef]

Vaughan, W.

W. G. Driscoll, W. Vaughan, Handbook of Optics (McGraw-Hill, New York, 1978).

White, H. E.

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), Chap. 24.

Yariv, A.

A. Yariv, Introduction to Optical Engineering (Holt, Rinehart & Winston, New York, 1971), Chap. 9.

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

C. Shaohuo, IEEE J. Quantum Electron. QE-19, 736 (1983).
[CrossRef]

Other (5)

The prisms were made by Kerem Optronics, Industrial Zone, Dimona, Israel.

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), Chap. 24.

A. Nusbaum, R. A. Phillip, Contemporary Optics for Scientists and Engineers (Prentice-Hall, Englewood Cliffs, N.J., 1976).

W. G. Driscoll, W. Vaughan, Handbook of Optics (McGraw-Hill, New York, 1978).

A. Yariv, Introduction to Optical Engineering (Holt, Rinehart & Winston, New York, 1971), Chap. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) On passing through inversely oriented calcite displacers, the unpolarized beam is unchanged, except for a phase shift of one polarization component. (b) A retarder alters the intermediate polarization, and thus side beams are generated in the second displacer.

Fig. 2
Fig. 2

Schematical description of a variable attenuator based on Rochon prisms. The dashed and solid lines, respectively, represent the beams with and without retarder action. In (a) the central output beam consists of unperturbed components, and in (b) the output beam consists of perturbed components.

Fig. 3
Fig. 3

As in Fig. 2, except that Lola polarization-splitting prisms replace the Rochon prisms.

Fig. 4
Fig. 4

Transmission versus the half-wave plate angle α obtained with the configuration of Fig. 3(b). The solid curve is a theoretical calculation based on Eq. (7b).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

T ( α , Φ = π ) = cos 2 ( 2 α ) .
E out , par = { [ SP ] × [ RET ] × [ SP ] } × E I ,
E out , inv = { [ SP - 1 ] × [ RET ] × [ SP ] } × E I .
E i = [ e i x exp ( i k 0 r ) e i y exp ( i k 0 r ) ] .
E = [ PS ] × E i ,
[ PS ] = [ 1 0 0 exp ( i k R r + i Γ ) ]
[ PS - 1 ] = [ 1 0 0 exp ( - i k R r + i Γ ) ] .
[ ATT inv ] = [ cos 2 ( α ) + sin 2 ( α ) exp ( i Φ ) sin ( 2 α ) 2 [ 1 - exp ( i Φ ) ] exp ( - i k R r + i Γ ) sin ( 2 α ) 2 [ 1 - exp ( i Φ ) ] exp ( + i k R r + i Γ ) [ sin 2 ( α ) + cos 2 ( α ) exp ( i Φ ) ] exp ( i 2 Γ ) ] .
I output = [ ATT inv ] 11 e i x 2 + [ ATT inv ] 22 e i y 2 ,
[ ATT inv ] 21 e i x 2 ,             [ ATT inv ] 12 e i y 2 .
T inv ( α , Φ ) = 1 - sin 2 ( 2 α ) sin 2 ( Φ / 2 ) ,
T par ( α , Φ ) = sin 2 ( 2 α ) sin 2 ( Φ / 2 ) .

Metrics