Abstract

A novel all-optical area-modulation scheme is suggested and experimentally demonstrated. In a mutually perpendicular interaction geometry inside a nonlinear material, the signal beam, which passes through an induced temporal prism formed by an area-modulated optical pump beam, undergoes a spatial phase modulation that leads to a beam deflection. Advantages and potential applications of the new all-optical modulation are addressed.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, P. C. Yeh, Optical Waves in Crystals (Wiley, New York, 1983), Chaps. 8–10.
  2. N. J. Berg, J. N. Lee, eds., Acousto-Optic Signal Processing (Dekker, New York, 1983).
  3. H. J. Eichler, P. Günter, D. Pohl, eds., Laser Induced Dynamic Gratings (Springer-Verlag, New York, 1986).
  4. R. R. Alfano, Y. Li, P. L. Baldeck, “All-optical beam deflection based on an induced area modulation in nonlinear materials,” U.S. patent pending.
  5. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1976), Chap. 5.
  6. M. J. Moran, C. Y. She, R. L. Carman, IEEE J. Quantum Electron. QE-11, 259 (1975).
    [Crossref]
  7. N. A. Clark, S. T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980).
    [Crossref]
  8. A. M. Glass, Opt. Eng. 17, 470 (1978).
  9. D. H. Auston, A. A. Ballman, P. Bhattacharya, G. J. Bjorklund, C. M. Bowden, R. W. Boyd, P. S. Brody, R. D. Burnham, R. L. Byer, G. M. Carter, D. S. Chemla, M. Dagenais, G. Dohler, U. Efron, D. Eimerl, R. S. Feigelson, J. Feinberg, B. J. Feldman, A. F. Garito, E. M. Garmire, H. M. Gibbs, A. M. Glass, L. S. Goldberg, R. L. Gunshor, T. K. Gustafson, Appl. Opt. 26, 211 (1987).
    [Crossref] [PubMed]
  10. K. Shum, G. C. Tang, M. R. Junnarkar, R. R. Alfano, Appl. Phys. Lett. 51, 1839 (1987).
    [Crossref]
  11. L. Yang, R. Dorsinville, P. P. Ho, W. K. Zou, N. L. Yang, R. R. Alfano, Appl. Phys. Lett. 53, 2008 (1988).
    [Crossref]
  12. D. J. Williams, ed., Nonlinear Optical Properties of Organic and Polymeric Materials (American Chemical Society, Washington, D.C., 1983).
    [Crossref]

1988 (1)

L. Yang, R. Dorsinville, P. P. Ho, W. K. Zou, N. L. Yang, R. R. Alfano, Appl. Phys. Lett. 53, 2008 (1988).
[Crossref]

1987 (2)

1980 (1)

N. A. Clark, S. T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980).
[Crossref]

1978 (1)

A. M. Glass, Opt. Eng. 17, 470 (1978).

1975 (1)

M. J. Moran, C. Y. She, R. L. Carman, IEEE J. Quantum Electron. QE-11, 259 (1975).
[Crossref]

Alfano, R. R.

L. Yang, R. Dorsinville, P. P. Ho, W. K. Zou, N. L. Yang, R. R. Alfano, Appl. Phys. Lett. 53, 2008 (1988).
[Crossref]

K. Shum, G. C. Tang, M. R. Junnarkar, R. R. Alfano, Appl. Phys. Lett. 51, 1839 (1987).
[Crossref]

R. R. Alfano, Y. Li, P. L. Baldeck, “All-optical beam deflection based on an induced area modulation in nonlinear materials,” U.S. patent pending.

Auston, D. H.

Baldeck, P. L.

R. R. Alfano, Y. Li, P. L. Baldeck, “All-optical beam deflection based on an induced area modulation in nonlinear materials,” U.S. patent pending.

Ballman, A. A.

Bhattacharya, P.

Bjorklund, G. J.

Bowden, C. M.

Boyd, R. W.

Brody, P. S.

Burnham, R. D.

Byer, R. L.

Carman, R. L.

M. J. Moran, C. Y. She, R. L. Carman, IEEE J. Quantum Electron. QE-11, 259 (1975).
[Crossref]

Carter, G. M.

Chemla, D. S.

Clark, N. A.

N. A. Clark, S. T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980).
[Crossref]

Dagenais, M.

Dohler, G.

Dorsinville, R.

L. Yang, R. Dorsinville, P. P. Ho, W. K. Zou, N. L. Yang, R. R. Alfano, Appl. Phys. Lett. 53, 2008 (1988).
[Crossref]

Efron, U.

Eimerl, D.

Feigelson, R. S.

Feinberg, J.

Feldman, B. J.

Garito, A. F.

Garmire, E. M.

Gibbs, H. M.

Glass, A. M.

Goldberg, L. S.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1976), Chap. 5.

Gunshor, R. L.

Gustafson, T. K.

Ho, P. P.

L. Yang, R. Dorsinville, P. P. Ho, W. K. Zou, N. L. Yang, R. R. Alfano, Appl. Phys. Lett. 53, 2008 (1988).
[Crossref]

Junnarkar, M. R.

K. Shum, G. C. Tang, M. R. Junnarkar, R. R. Alfano, Appl. Phys. Lett. 51, 1839 (1987).
[Crossref]

Lagerwall, S. T.

N. A. Clark, S. T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980).
[Crossref]

Li, Y.

R. R. Alfano, Y. Li, P. L. Baldeck, “All-optical beam deflection based on an induced area modulation in nonlinear materials,” U.S. patent pending.

Moran, M. J.

M. J. Moran, C. Y. She, R. L. Carman, IEEE J. Quantum Electron. QE-11, 259 (1975).
[Crossref]

She, C. Y.

M. J. Moran, C. Y. She, R. L. Carman, IEEE J. Quantum Electron. QE-11, 259 (1975).
[Crossref]

Shum, K.

K. Shum, G. C. Tang, M. R. Junnarkar, R. R. Alfano, Appl. Phys. Lett. 51, 1839 (1987).
[Crossref]

Tang, G. C.

K. Shum, G. C. Tang, M. R. Junnarkar, R. R. Alfano, Appl. Phys. Lett. 51, 1839 (1987).
[Crossref]

Yang, L.

L. Yang, R. Dorsinville, P. P. Ho, W. K. Zou, N. L. Yang, R. R. Alfano, Appl. Phys. Lett. 53, 2008 (1988).
[Crossref]

Yang, N. L.

L. Yang, R. Dorsinville, P. P. Ho, W. K. Zou, N. L. Yang, R. R. Alfano, Appl. Phys. Lett. 53, 2008 (1988).
[Crossref]

Yariv, A.

A. Yariv, P. C. Yeh, Optical Waves in Crystals (Wiley, New York, 1983), Chaps. 8–10.

Yeh, P. C.

A. Yariv, P. C. Yeh, Optical Waves in Crystals (Wiley, New York, 1983), Chaps. 8–10.

Zou, W. K.

L. Yang, R. Dorsinville, P. P. Ho, W. K. Zou, N. L. Yang, R. R. Alfano, Appl. Phys. Lett. 53, 2008 (1988).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

N. A. Clark, S. T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980).
[Crossref]

K. Shum, G. C. Tang, M. R. Junnarkar, R. R. Alfano, Appl. Phys. Lett. 51, 1839 (1987).
[Crossref]

L. Yang, R. Dorsinville, P. P. Ho, W. K. Zou, N. L. Yang, R. R. Alfano, Appl. Phys. Lett. 53, 2008 (1988).
[Crossref]

IEEE J. Quantum Electron. (1)

M. J. Moran, C. Y. She, R. L. Carman, IEEE J. Quantum Electron. QE-11, 259 (1975).
[Crossref]

Opt. Eng. (1)

A. M. Glass, Opt. Eng. 17, 470 (1978).

Other (6)

D. J. Williams, ed., Nonlinear Optical Properties of Organic and Polymeric Materials (American Chemical Society, Washington, D.C., 1983).
[Crossref]

A. Yariv, P. C. Yeh, Optical Waves in Crystals (Wiley, New York, 1983), Chaps. 8–10.

N. J. Berg, J. N. Lee, eds., Acousto-Optic Signal Processing (Dekker, New York, 1983).

H. J. Eichler, P. Günter, D. Pohl, eds., Laser Induced Dynamic Gratings (Springer-Verlag, New York, 1986).

R. R. Alfano, Y. Li, P. L. Baldeck, “All-optical beam deflection based on an induced area modulation in nonlinear materials,” U.S. patent pending.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1976), Chap. 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the induced area-modulated all-optical deflector. A triangular area modulation is used.

Fig. 2
Fig. 2

Optical ray-tracing geometry for the induced deflector. n′ and n are the material refractive indices with and without the optical modulation; α, D, and L are the apex angle, the aperture, and the base length of the isosceles triangle set by area modulation; γ is the deflection angle.

Fig. 3
Fig. 3

Output signal pulses without (curve a) and with (curve b) deflection recorded by the optical multichannel analyzer. Curve a is without pump beam on, and curve b is with pump beam on.

Fig. 4
Fig. 4

Intensity dependence of the deflection angle. The solid line is the linear fit of the experimental data.

Fig. 5
Fig. 5

Deflection angle versus the delay time between the pump and probe signal beams. The solid curve is the Gaussian fit.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n n = sin [ α 2 + sin - 1 ( sin γ / 2 n ) ] sin α / 2 .
γ L Δ n D ,
γ beam = λ π ω 0 ,
N = γ γ beam = π L Δ n ω 0 D λ

Metrics