Abstract

The analysis of a noncollinear acousto-optic tunable filter commonly found in the literature is based on an approximation for the birefringence of the interaction material. It is demonstrated that this approximation leads to a significant error in calculating the optimum incident angle for a device, which can seriously degrade its performance if a fixed output beam angle is required. An alternative, exact analysis is presented and compared with experimental results.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, R. W. Wallace, J. Opt. Soc. Am. 59, 744 (1969).
    [CrossRef]
  2. I. C. Chang, Appl. Phys. Lett. 25, 370 (1974).
    [CrossRef]
  3. L. Junjie, Proc. Soc. Photo-Opt. Instrum. Eng. 567, 28 (1985).
  4. I. C. Chang, Opt. Eng. 20, 824 (1981).
  5. V. M. Epikhin, F. L. Vizen, L. L. Pal’tsev, Sov. Phys. Tech. Phys. 32, 1149 (1987).

1987 (1)

V. M. Epikhin, F. L. Vizen, L. L. Pal’tsev, Sov. Phys. Tech. Phys. 32, 1149 (1987).

1985 (1)

L. Junjie, Proc. Soc. Photo-Opt. Instrum. Eng. 567, 28 (1985).

1981 (1)

I. C. Chang, Opt. Eng. 20, 824 (1981).

1974 (1)

I. C. Chang, Appl. Phys. Lett. 25, 370 (1974).
[CrossRef]

1969 (1)

Chang, I. C.

I. C. Chang, Opt. Eng. 20, 824 (1981).

I. C. Chang, Appl. Phys. Lett. 25, 370 (1974).
[CrossRef]

Epikhin, V. M.

V. M. Epikhin, F. L. Vizen, L. L. Pal’tsev, Sov. Phys. Tech. Phys. 32, 1149 (1987).

Harris, S. E.

Junjie, L.

L. Junjie, Proc. Soc. Photo-Opt. Instrum. Eng. 567, 28 (1985).

Pal’tsev, L. L.

V. M. Epikhin, F. L. Vizen, L. L. Pal’tsev, Sov. Phys. Tech. Phys. 32, 1149 (1987).

Vizen, F. L.

V. M. Epikhin, F. L. Vizen, L. L. Pal’tsev, Sov. Phys. Tech. Phys. 32, 1149 (1987).

Wallace, R. W.

Appl. Phys. Lett. (1)

I. C. Chang, Appl. Phys. Lett. 25, 370 (1974).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

I. C. Chang, Opt. Eng. 20, 824 (1981).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

L. Junjie, Proc. Soc. Photo-Opt. Instrum. Eng. 567, 28 (1985).

Sov. Phys. Tech. Phys. (1)

V. M. Epikhin, F. L. Vizen, L. L. Pal’tsev, Sov. Phys. Tech. Phys. 32, 1149 (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Momentum space interaction geometry for a non-collinear AOTF. ki and kd are the wave vectors for the incident and diffracted optical beams, respectively; Ka is the acoustic wave vector.

Fig. 2
Fig. 2

Experimental assessment of the angular dependence of AOTF transmission.

Fig. 3
Fig. 3

Angular dependence of AOTF transmission for an e-polarized incident beam. The radio-frequency power is 75 mW, and the optical wavelength is 632.8 nm.

Fig. 4
Fig. 4

Angular dependence of AOTF transmission for an o-polarized incident beam. The radio-frequency power is 75 mW, and the optical wavlength is 632.8 nm.

Fig. 5
Fig. 5

Agreement between experimental data and the exact tuning relationship. The data points are the measured acoustic frequencies for peak diffraction; the solid curves are calculated from relation (11).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

k d = k i + K a .
n = ( cos 2 θ e / n 0 2 + sin 2 θ e / n e 2 ) - 1 / 2 ,
( n e / n o ) tan θ o = ( n o / n e ) tan θ e ,
tan θ a = n sin θ e - n o sin θ o n cos θ e - n o cos θ o ,
f a = ( V a / λ o ) [ n o 2 + n 2 - 2 n o n cos ( θ o - θ e ) ] 1 / 2 ,
( tan θ a ) i = - ( ( n e / n o ) + { ( n e / n o ) 2 + [ ( n e / n o ) 2 + 1 ] A i 2 + A i 4 } 1 / 2 ) / A i ,
A o = ( n e / n o ) tan θ o ,             A e = ( n o / n e ) tan θ e .
n n 0 ( 1 + δ sin 2 θ e ) .
( tan θ a ) e - ( 2 + tan 2 θ e ) / tan θ e .
( tan θ a ) e - [ 2 + tan 2 θ e + δ ( 4 - tan 2 θ e ) ] / tan θ e ,
( tan θ a ) o - ( 2 + tan 2 θ o + δ tan 2 θ 0 ) / tan θ o .
( f a ) i = ( V a B i / λ o ) ( C i ± { C i 2 + [ ( n o / n e ) 2 - 1 ] D i } 1 / 2 ) ,
B o = ( cos 2 θ a / n o 2 + sin 2 θ a / n e 2 ) - 1 / 2 , B e = ( cos 2 θ e / n o 2 + sin 2 θ e / n e 2 ) - 1 / 2 , C o = ( B o / n o ) [ cos θ a cos θ o + ( n o / n e ) 2 sin θ a sin θ o ] , C e = - cos ( θ e - θ a ) , D o = - sin 2 θ o ,             D e = sin 2 θ e .

Metrics