Abstract

We show both theoretically and experimentally that a random distribution of spherical microparticles may be used as a spectral hole burning memory. This microparticle hole burning memory, which can be both written and read at room temperature, is a direct consequence of the properties of morphology-dependent resonances of microparticles.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. R. Lettieri, E. Marx, Appl. Opt. 25, 4325 (1986).
    [CrossRef] [PubMed]
  2. W. E. Moerner, ed., Persistent Spectral Hole Burning: Science and Applications (Springer-Verlag, Berlin, 1988).
    [CrossRef]
  3. L. M. Folan, S. Arnold, Opt. Lett. 13, 1 (1988).
    [CrossRef] [PubMed]
  4. S. C. Hill, R. E. Benner, in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Teaneck, N.J., 1988), Chap. 1.
  5. M. Kalos, P. Whitlock, Monte Carlo Methods (Wiley, New York, 1986), Vol. 1, p. 47.
  6. S. C. Hill, R. E. Benner, C. K. Rushforth, P. R. Conwell, Appl. Opt. 23, 1680 (1984).
    [CrossRef] [PubMed]
  7. K. A. Fuller, Appl. Opt. 28, 3788 (1989).
    [CrossRef] [PubMed]

1989 (1)

1988 (1)

1986 (1)

1984 (1)

Arnold, S.

Benner, R. E.

S. C. Hill, R. E. Benner, C. K. Rushforth, P. R. Conwell, Appl. Opt. 23, 1680 (1984).
[CrossRef] [PubMed]

S. C. Hill, R. E. Benner, in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Teaneck, N.J., 1988), Chap. 1.

Conwell, P. R.

Folan, L. M.

Fuller, K. A.

Hill, S. C.

S. C. Hill, R. E. Benner, C. K. Rushforth, P. R. Conwell, Appl. Opt. 23, 1680 (1984).
[CrossRef] [PubMed]

S. C. Hill, R. E. Benner, in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Teaneck, N.J., 1988), Chap. 1.

Kalos, M.

M. Kalos, P. Whitlock, Monte Carlo Methods (Wiley, New York, 1986), Vol. 1, p. 47.

Lettieri, T. R.

Marx, E.

Rushforth, C. K.

Whitlock, P.

M. Kalos, P. Whitlock, Monte Carlo Methods (Wiley, New York, 1986), Vol. 1, p. 47.

Appl. Opt. (3)

Opt. Lett. (1)

Other (3)

S. C. Hill, R. E. Benner, in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Teaneck, N.J., 1988), Chap. 1.

M. Kalos, P. Whitlock, Monte Carlo Methods (Wiley, New York, 1986), Vol. 1, p. 47.

W. E. Moerner, ed., Persistent Spectral Hole Burning: Science and Applications (Springer-Verlag, Berlin, 1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simulated normal random distribution of 104 polysytrene particles having a mean radius of 1.44 μm and a standard deviation of 1% in this size. The arrows indicate the parts of the distribution in resonance with a laser at 588.3 nm.

Fig. 2
Fig. 2

(a) Simulated fluorescence excitation spectrum for a particle at the center of the distribution, a = 1.44 μm. (b) Simulated fluorescence excitation spectrum for the particle distribution in Fig. 1.

Fig. 3
Fig. 3

Fluorescence excitation spectra before (β = 0) and after two simulated burns (β = 1 and 20) on the particle distribution in Fig. 1.

Fig. 4
Fig. 4

Fluorescence excitation spectra taken (a) before and (b) after projecting a relatively intense laser onto the sample at 572.3 nm.

Metrics