Abstract

We propose optical channel waveguide structures in which two-dimensional mode size transformation is achieved by lateral tapering only. The layer structure of the waveguide is designed such that tapering the lateral channel width results in a tapering of the vertical size of the mode as well. This is accomplished by providing two waveguide cores in a single-mode system. When the rib is wide, the mode resides in the upper core, tightly confined by the rib. As the rib narrows, the field migrates to the lower core and spreads out in both dimensions, permitting a better match to large-mode structures such as optical fibers. Our calculations show that such waveguide tapers can significantly reduce the losses for coupling single-mode optical fibers to semiconductor channel waveguides.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription