Abstract

We propose optical channel waveguide structures in which two-dimensional mode size transformation is achieved by lateral tapering only. The layer structure of the waveguide is designed such that tapering the lateral channel width results in a tapering of the vertical size of the mode as well. This is accomplished by providing two waveguide cores in a single-mode system. When the rib is wide, the mode resides in the upper core, tightly confined by the rib. As the rib narrows, the field migrates to the lower core and spreads out in both dimensions, permitting a better match to large-mode structures such as optical fibers. Our calculations show that such waveguide tapers can significantly reduce the losses for coupling single-mode optical fibers to semiconductor channel waveguides.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. Suchoski, R. V. Ramaswamy, IEEE J. Lightwave Technol. LT-5, 1246 (1987).
    [CrossRef]
  2. A. Mahapatra, J. M. Connors, Opt. Lett. 13, 169 (1988).
    [CrossRef] [PubMed]
  3. H. L. Cox, S. D. Connor, P. R. Ashley, R. L. Morgan, IEEE J. Lightwave Technol. 6, 1045(1988).
    [CrossRef]
  4. N. Yamaguchi, Y. Kokubun, Electron. Lett. 25, 128 (1988).
    [CrossRef]
  5. H. Yanagawa, S. Nakamura, K. Watanabe, H. Miyazawa, Electron. Lett. 22, 849 (1989).
    [CrossRef]
  6. D. E. Bossi, W. D. Goodhue, R. H. Rediker, in Integrated and Guided-Wave Optics, Vol. 4 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 80–83.
  7. A. Shahar, W. J. Tomlinson, A. Yi-Yan, M. Seto, R. J. Deri, Appl. Phys. Lett. 56, 1098 (1990).
    [CrossRef]
  8. S. E. Koonin, Computational Physics (Benjamin-Cummings, Menlo Park, Calif., 1985).
  9. Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, D. A. Ackerman, Appl. Phys. Lett. 55, 2389 (1989).
    [CrossRef]

1990 (1)

A. Shahar, W. J. Tomlinson, A. Yi-Yan, M. Seto, R. J. Deri, Appl. Phys. Lett. 56, 1098 (1990).
[CrossRef]

1989 (2)

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, D. A. Ackerman, Appl. Phys. Lett. 55, 2389 (1989).
[CrossRef]

H. Yanagawa, S. Nakamura, K. Watanabe, H. Miyazawa, Electron. Lett. 22, 849 (1989).
[CrossRef]

1988 (3)

A. Mahapatra, J. M. Connors, Opt. Lett. 13, 169 (1988).
[CrossRef] [PubMed]

H. L. Cox, S. D. Connor, P. R. Ashley, R. L. Morgan, IEEE J. Lightwave Technol. 6, 1045(1988).
[CrossRef]

N. Yamaguchi, Y. Kokubun, Electron. Lett. 25, 128 (1988).
[CrossRef]

1987 (1)

P. G. Suchoski, R. V. Ramaswamy, IEEE J. Lightwave Technol. LT-5, 1246 (1987).
[CrossRef]

Ackerman, D. A.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, D. A. Ackerman, Appl. Phys. Lett. 55, 2389 (1989).
[CrossRef]

Ashley, P. R.

H. L. Cox, S. D. Connor, P. R. Ashley, R. L. Morgan, IEEE J. Lightwave Technol. 6, 1045(1988).
[CrossRef]

Bossi, D. E.

D. E. Bossi, W. D. Goodhue, R. H. Rediker, in Integrated and Guided-Wave Optics, Vol. 4 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 80–83.

Connor, S. D.

H. L. Cox, S. D. Connor, P. R. Ashley, R. L. Morgan, IEEE J. Lightwave Technol. 6, 1045(1988).
[CrossRef]

Connors, J. M.

Cox, H. L.

H. L. Cox, S. D. Connor, P. R. Ashley, R. L. Morgan, IEEE J. Lightwave Technol. 6, 1045(1988).
[CrossRef]

Deri, R. J.

A. Shahar, W. J. Tomlinson, A. Yi-Yan, M. Seto, R. J. Deri, Appl. Phys. Lett. 56, 1098 (1990).
[CrossRef]

Goodhue, W. D.

D. E. Bossi, W. D. Goodhue, R. H. Rediker, in Integrated and Guided-Wave Optics, Vol. 4 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 80–83.

Henry, C. H.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, D. A. Ackerman, Appl. Phys. Lett. 55, 2389 (1989).
[CrossRef]

Kistler, R. C.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, D. A. Ackerman, Appl. Phys. Lett. 55, 2389 (1989).
[CrossRef]

Kokubun, Y.

N. Yamaguchi, Y. Kokubun, Electron. Lett. 25, 128 (1988).
[CrossRef]

Koonin, S. E.

S. E. Koonin, Computational Physics (Benjamin-Cummings, Menlo Park, Calif., 1985).

Mahapatra, A.

Miyazawa, H.

H. Yanagawa, S. Nakamura, K. Watanabe, H. Miyazawa, Electron. Lett. 22, 849 (1989).
[CrossRef]

Morgan, R. L.

H. L. Cox, S. D. Connor, P. R. Ashley, R. L. Morgan, IEEE J. Lightwave Technol. 6, 1045(1988).
[CrossRef]

Nakamura, S.

H. Yanagawa, S. Nakamura, K. Watanabe, H. Miyazawa, Electron. Lett. 22, 849 (1989).
[CrossRef]

Orlowsky, K. J.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, D. A. Ackerman, Appl. Phys. Lett. 55, 2389 (1989).
[CrossRef]

Ramaswamy, R. V.

P. G. Suchoski, R. V. Ramaswamy, IEEE J. Lightwave Technol. LT-5, 1246 (1987).
[CrossRef]

Rediker, R. H.

D. E. Bossi, W. D. Goodhue, R. H. Rediker, in Integrated and Guided-Wave Optics, Vol. 4 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 80–83.

Seto, M.

A. Shahar, W. J. Tomlinson, A. Yi-Yan, M. Seto, R. J. Deri, Appl. Phys. Lett. 56, 1098 (1990).
[CrossRef]

Shahar, A.

A. Shahar, W. J. Tomlinson, A. Yi-Yan, M. Seto, R. J. Deri, Appl. Phys. Lett. 56, 1098 (1990).
[CrossRef]

Shani, Y.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, D. A. Ackerman, Appl. Phys. Lett. 55, 2389 (1989).
[CrossRef]

Suchoski, P. G.

P. G. Suchoski, R. V. Ramaswamy, IEEE J. Lightwave Technol. LT-5, 1246 (1987).
[CrossRef]

Tomlinson, W. J.

A. Shahar, W. J. Tomlinson, A. Yi-Yan, M. Seto, R. J. Deri, Appl. Phys. Lett. 56, 1098 (1990).
[CrossRef]

Watanabe, K.

H. Yanagawa, S. Nakamura, K. Watanabe, H. Miyazawa, Electron. Lett. 22, 849 (1989).
[CrossRef]

Yamaguchi, N.

N. Yamaguchi, Y. Kokubun, Electron. Lett. 25, 128 (1988).
[CrossRef]

Yanagawa, H.

H. Yanagawa, S. Nakamura, K. Watanabe, H. Miyazawa, Electron. Lett. 22, 849 (1989).
[CrossRef]

Yi-Yan, A.

A. Shahar, W. J. Tomlinson, A. Yi-Yan, M. Seto, R. J. Deri, Appl. Phys. Lett. 56, 1098 (1990).
[CrossRef]

Appl. Phys. Lett. (2)

A. Shahar, W. J. Tomlinson, A. Yi-Yan, M. Seto, R. J. Deri, Appl. Phys. Lett. 56, 1098 (1990).
[CrossRef]

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, D. A. Ackerman, Appl. Phys. Lett. 55, 2389 (1989).
[CrossRef]

Electron. Lett. (2)

N. Yamaguchi, Y. Kokubun, Electron. Lett. 25, 128 (1988).
[CrossRef]

H. Yanagawa, S. Nakamura, K. Watanabe, H. Miyazawa, Electron. Lett. 22, 849 (1989).
[CrossRef]

IEEE J. Lightwave Technol. (2)

P. G. Suchoski, R. V. Ramaswamy, IEEE J. Lightwave Technol. LT-5, 1246 (1987).
[CrossRef]

H. L. Cox, S. D. Connor, P. R. Ashley, R. L. Morgan, IEEE J. Lightwave Technol. 6, 1045(1988).
[CrossRef]

Opt. Lett. (1)

Other (2)

D. E. Bossi, W. D. Goodhue, R. H. Rediker, in Integrated and Guided-Wave Optics, Vol. 4 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 80–83.

S. E. Koonin, Computational Physics (Benjamin-Cummings, Menlo Park, Calif., 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Cross section of rib waveguide and level lines of the electric field. The contour interval is 0.1 times the maximum field value. The wavelength is 1.52 μm. Material indices of the AlxGa(1−x)As layers are (from the top to the bottom) air 1.0, top layer 3.373 (x = 0), buffer layer 3.327 (x ≃ 0.10), sublayer 3.337 (x ≃ 0.08), and substrate 3.327 (x ≃ 0.10). The material index distribution is shown at the right. The top layer thickness at the rib is 1.0 μm, elsewhere it is 0.05 μm; rib height 0.95 μm, buffer layer thickness 0.2 μm, and sublayer thickness 1.8 μm. (a) Rib width at base 8 μm, width at top 7 μm. (b) Rib base 4 μm, width at top 3 μm. (c) Rib base 3 μm; width at top 2 μm. (d) Rib base 2.5 μm, width at top 1.5 μm.

Fig. 2
Fig. 2

Cross section of waveguide and level lines of the electric field. The contour interval is 0.1 times the maximum value of the field. The wavelength is 1.523μm. Material indices of the AlxGa(1−x)As layers are top rib 3.373 (x = 0), next layer 3.336 (x = 0.08), and substrate 3.327 (x = 0.10). The material index distribution is shown at the right. Top rib height is 1.0 μm; shoulder height is 1.0 μm; intermediate layer thickness at rib is 1.8 μm, elsewhere it is 0.8 μm; shoulder width 14 μm. (a) Top rib width 3.5 μm. (b) Top rib width zero, which leaves only the shoulder of width 14 μm.

Fig. 3
Fig. 3

Top views of laterally tapered ribs and effective index distributions at each end. (a) Top view of a laterally tapered transition from a wide rib to a narrow rib (cf. Fig. 1). (b) An implementation of the double-ribbed structure of Fig. 2, in which the width of each rib is tapered simultaneously, the width of the upper rib being tapered until it vanishes.

Metrics