Abstract

We describe the noncontact optical trapping of small particles by a single-beam gradient force using a near-infrared InGaAsP diode laser operating at 1.33 μm. The feasibility and reliability of diode-laser trapping was confirmed with polystyrene latex and glass spheres as well as with yeast cells. By moving small particles vertically to the laser beam axis, we measured the horizontal component of the trapping force based on the Stokes law. Thus a linear relationship between the trapping laser power and the horizontal trapping force is demonstrated and compared quantitatively with that for the Ar laser.

© 1991 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Trace gas detection using 1.3–μm InGaAsP diode laser transmitter modules

Daniel T. Cassidy
Appl. Opt. 27(3) 610-614 (1988)

Optical trapping of metallic Rayleigh particles

Karel Svoboda and Steven M. Block
Opt. Lett. 19(13) 930-932 (1994)

Particle size limits when using optical trapping and deflection of particles for sorting using diode laser bars

Robert W. Applegate, David W. M. Marr, Jeff Squier, and Steven W. Graves
Opt. Express 17(19) 16731-16738 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription