Abstract

We demonstrate the operation of a quadrature phase-shifted extrinsic Fabry–Perot fiber-optic sensor for the detection of the amplitude and the relative polarity of dynamically varying strain. Two laterally displaced single-mode fibers inserted within a hollow silica tube form the 90° phase-shifted sensing system. A multimode fiber, placed in the tube facing the two fibers, acts as a reflector, thereby creating an air gap that acts as a Fabry–Perot cavity. A theoretical description of the sensor is given, and its operation as a dynamically varying strain sensor is described. Strain sensitivities of 5.54° phase shift/microstrain cm−1 are obtained.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, IEEE J. Quantum Electron. QE-18, 1624 (1982).
    [CrossRef]
  2. K. L. Belsley, J. B. Carroll, L. A. Hess, D. R. Huber, D. Schmadel, Proc. Soc. Photo-Opt. Instrum. Eng. 566, 257 (1985).
  3. A. D. Kersey, D. A. Jackson, M. Corke, Opt. Commun. 45, 71 (1983).
    [CrossRef]
  4. C. E. Lee, H. F. Taylor, Electron. Lett. 24, 193 (1988).
    [CrossRef]
  5. J. Putz, J. Putz, A. Wicks, T. Diller, “Thin-film shear stress gauge,” presented at the American Society of Mechanical Engineers Winter Annual Meeting, Dallas, Texas, November 26, 1990.
  6. K. A. Murphy, M. S. Miller, A. M. Vengsarkar, R. O. Claus, IEEE J. Lightwave Technol. 8, 1688 (1990).
    [CrossRef]
  7. G. Keiser, Optical Fiber Communications (McGraw-Hill, New York, 1983), p. 134.

1990 (1)

K. A. Murphy, M. S. Miller, A. M. Vengsarkar, R. O. Claus, IEEE J. Lightwave Technol. 8, 1688 (1990).
[CrossRef]

1988 (1)

C. E. Lee, H. F. Taylor, Electron. Lett. 24, 193 (1988).
[CrossRef]

1985 (1)

K. L. Belsley, J. B. Carroll, L. A. Hess, D. R. Huber, D. Schmadel, Proc. Soc. Photo-Opt. Instrum. Eng. 566, 257 (1985).

1983 (1)

A. D. Kersey, D. A. Jackson, M. Corke, Opt. Commun. 45, 71 (1983).
[CrossRef]

1982 (1)

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

Belsley, K. L.

K. L. Belsley, J. B. Carroll, L. A. Hess, D. R. Huber, D. Schmadel, Proc. Soc. Photo-Opt. Instrum. Eng. 566, 257 (1985).

Carroll, J. B.

K. L. Belsley, J. B. Carroll, L. A. Hess, D. R. Huber, D. Schmadel, Proc. Soc. Photo-Opt. Instrum. Eng. 566, 257 (1985).

Claus, R. O.

K. A. Murphy, M. S. Miller, A. M. Vengsarkar, R. O. Claus, IEEE J. Lightwave Technol. 8, 1688 (1990).
[CrossRef]

Corke, M.

A. D. Kersey, D. A. Jackson, M. Corke, Opt. Commun. 45, 71 (1983).
[CrossRef]

Diller, T.

J. Putz, J. Putz, A. Wicks, T. Diller, “Thin-film shear stress gauge,” presented at the American Society of Mechanical Engineers Winter Annual Meeting, Dallas, Texas, November 26, 1990.

Hess, L. A.

K. L. Belsley, J. B. Carroll, L. A. Hess, D. R. Huber, D. Schmadel, Proc. Soc. Photo-Opt. Instrum. Eng. 566, 257 (1985).

Huber, D. R.

K. L. Belsley, J. B. Carroll, L. A. Hess, D. R. Huber, D. Schmadel, Proc. Soc. Photo-Opt. Instrum. Eng. 566, 257 (1985).

Itoh, K.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

Jackson, D. A.

A. D. Kersey, D. A. Jackson, M. Corke, Opt. Commun. 45, 71 (1983).
[CrossRef]

Keiser, G.

G. Keiser, Optical Fiber Communications (McGraw-Hill, New York, 1983), p. 134.

Kersey, A. D.

A. D. Kersey, D. A. Jackson, M. Corke, Opt. Commun. 45, 71 (1983).
[CrossRef]

Kurosawa, K.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

Lee, C. E.

C. E. Lee, H. F. Taylor, Electron. Lett. 24, 193 (1988).
[CrossRef]

Miller, M. S.

K. A. Murphy, M. S. Miller, A. M. Vengsarkar, R. O. Claus, IEEE J. Lightwave Technol. 8, 1688 (1990).
[CrossRef]

Murphy, K. A.

K. A. Murphy, M. S. Miller, A. M. Vengsarkar, R. O. Claus, IEEE J. Lightwave Technol. 8, 1688 (1990).
[CrossRef]

Ose, T.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

Putz, J.

J. Putz, J. Putz, A. Wicks, T. Diller, “Thin-film shear stress gauge,” presented at the American Society of Mechanical Engineers Winter Annual Meeting, Dallas, Texas, November 26, 1990.

J. Putz, J. Putz, A. Wicks, T. Diller, “Thin-film shear stress gauge,” presented at the American Society of Mechanical Engineers Winter Annual Meeting, Dallas, Texas, November 26, 1990.

Schmadel, D.

K. L. Belsley, J. B. Carroll, L. A. Hess, D. R. Huber, D. Schmadel, Proc. Soc. Photo-Opt. Instrum. Eng. 566, 257 (1985).

Taylor, H. F.

C. E. Lee, H. F. Taylor, Electron. Lett. 24, 193 (1988).
[CrossRef]

Vengsarkar, A. M.

K. A. Murphy, M. S. Miller, A. M. Vengsarkar, R. O. Claus, IEEE J. Lightwave Technol. 8, 1688 (1990).
[CrossRef]

Wicks, A.

J. Putz, J. Putz, A. Wicks, T. Diller, “Thin-film shear stress gauge,” presented at the American Society of Mechanical Engineers Winter Annual Meeting, Dallas, Texas, November 26, 1990.

Yoshino, T.

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

Electron. Lett. (1)

C. E. Lee, H. F. Taylor, Electron. Lett. 24, 193 (1988).
[CrossRef]

IEEE J. Lightwave Technol. (1)

K. A. Murphy, M. S. Miller, A. M. Vengsarkar, R. O. Claus, IEEE J. Lightwave Technol. 8, 1688 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, IEEE J. Quantum Electron. QE-18, 1624 (1982).
[CrossRef]

Opt. Commun. (1)

A. D. Kersey, D. A. Jackson, M. Corke, Opt. Commun. 45, 71 (1983).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

K. L. Belsley, J. B. Carroll, L. A. Hess, D. R. Huber, D. Schmadel, Proc. Soc. Photo-Opt. Instrum. Eng. 566, 257 (1985).

Other (2)

J. Putz, J. Putz, A. Wicks, T. Diller, “Thin-film shear stress gauge,” presented at the American Society of Mechanical Engineers Winter Annual Meeting, Dallas, Texas, November 26, 1990.

G. Keiser, Optical Fiber Communications (McGraw-Hill, New York, 1983), p. 134.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Construction of extrinsic Fabry–Perot sensor. L, laser diode; D, detector; E, broken end.

Fig. 2
Fig. 2

Variation of output intensity with increasing gap displacement.

Fig. 3
Fig. 3

Oscilloscope trace of observed fringes for increasing gap displacement.

Fig. 4
Fig. 4

Principle of operation of quadrature phase-shifted sensors.

Fig. 5
Fig. 5

Experimental setups for phase-shifted Fabry–Perot sensors. L1, L2, laser diodes.

Fig. 6
Fig. 6

Oscilloscope trace of quadrature phase-shifted sensors showing lead–lag phenomenon.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

U i ( x , z , t ) = A i exp ( j ϕ i ) ,             i = 1 , 2 ,
A 2 = A { t a a + 2 s tan [ sin - 1 ( NA ) ] } ,
I det = U 1 + U 2 2 = A 1 2 + A 2 2 + 2 A 1 A 2 cos ( ϕ 1 - ϕ 2 ) ,
I det = A 2 ( 1 + 2 t a a + 2 s tan [ sin - 1 ( NA ) ] × cos ( 4 π s λ ) + { t a a + 2 s tan [ sin - 1 ( NA ) ] } 2 ) ,

Metrics