Abstract

We show theoretically that polarization instability can be observed in planar optical waveguides. Such instability would lead to energy exchange between the spatial solitons associated with the TE0 and TM0 waveguide modes as well as to amplitude-modulation gain, which was recently observed in an optical-fiber geometry.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L Jackel, D. E. Leard, E. M. Vogel, P. W. Smith, Opt. Lett. 15, 471 (1990).
    [CrossRef] [PubMed]
  2. S. F. Feldman, D. A. Weinberger, H. G. Winful, Opt. Lett. 15, 311 (1990).
    [CrossRef] [PubMed]
  3. R. Y. Chiao, E. Garmire, C. H. Townes, Phys. Rev. Lett. 13, 479 (1964); V. E. Zakharov, A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).
    [CrossRef]
  4. H. Winful, Appl. Phys. Lett. 47, 213 (1985).
    [CrossRef]
  5. S. Maneuf, F. Reynaud, Opt. Commun. 66, 325 (1988).
    [CrossRef]
  6. H. Winful, Opt. Lett. 11, 33 (1986).
    [CrossRef] [PubMed]
  7. K. J. Blow, N. J. Doran, D. Wood, Opt. Lett. 12, 202 (1987).
    [CrossRef] [PubMed]
  8. K. Hayata, A. Misawa, M. Koshiba, J. Opt. Soc. Am. B 7, 1268 (1990).
    [CrossRef]
  9. H. Kogelnik, in Integrated Optics, T. Tamir, ed. (Springer-Verlag, Berlin, 1979), p. 15.
  10. G. L. Yip, J. Albert, Opt. Lett. 10, 151 (1985).
    [CrossRef] [PubMed]
  11. A. Brandenburg, IEEE J. Lightwave Technol. LT-4, 1580 (1986).
    [CrossRef]
  12. C. M. de Sterke, J. E. Sipe, J. Opt. Soc. Am. A 7, 636 (1990), Eq. (4.17).
    [CrossRef]
  13. C. R. Menyuk, IEEE J. Quantum Electron. QE-23, 174 (1987).
    [CrossRef]
  14. A. D. Boardman, G. S. Cooper, J. Opt. Soc. Am. B 5, 403 (1988).
    [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989), Secs. 7.1 and 7.2.
  16. D. N. Christodoulides, R. I. Joseph, Opt. Lett. 13, 53 (1988).
    [CrossRef] [PubMed]
  17. M. V. Tratnik, J. E. Sipe, Phys. Rev. A 38, 2011 (1988).
    [CrossRef] [PubMed]

1990 (4)

1988 (4)

1987 (2)

K. J. Blow, N. J. Doran, D. Wood, Opt. Lett. 12, 202 (1987).
[CrossRef] [PubMed]

C. R. Menyuk, IEEE J. Quantum Electron. QE-23, 174 (1987).
[CrossRef]

1986 (2)

A. Brandenburg, IEEE J. Lightwave Technol. LT-4, 1580 (1986).
[CrossRef]

H. Winful, Opt. Lett. 11, 33 (1986).
[CrossRef] [PubMed]

1985 (2)

1964 (1)

R. Y. Chiao, E. Garmire, C. H. Townes, Phys. Rev. Lett. 13, 479 (1964); V. E. Zakharov, A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989), Secs. 7.1 and 7.2.

Aitchison, J. S.

Albert, J.

Blow, K. J.

Boardman, A. D.

Brandenburg, A.

A. Brandenburg, IEEE J. Lightwave Technol. LT-4, 1580 (1986).
[CrossRef]

Chiao, R. Y.

R. Y. Chiao, E. Garmire, C. H. Townes, Phys. Rev. Lett. 13, 479 (1964); V. E. Zakharov, A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).
[CrossRef]

Christodoulides, D. N.

Cooper, G. S.

de Sterke, C. M.

Doran, N. J.

Feldman, S. F.

Garmire, E.

R. Y. Chiao, E. Garmire, C. H. Townes, Phys. Rev. Lett. 13, 479 (1964); V. E. Zakharov, A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).
[CrossRef]

Hayata, K.

Jackel, J. L

Joseph, R. I.

Kogelnik, H.

H. Kogelnik, in Integrated Optics, T. Tamir, ed. (Springer-Verlag, Berlin, 1979), p. 15.

Koshiba, M.

Leard, D. E.

Maneuf, S.

S. Maneuf, F. Reynaud, Opt. Commun. 66, 325 (1988).
[CrossRef]

Menyuk, C. R.

C. R. Menyuk, IEEE J. Quantum Electron. QE-23, 174 (1987).
[CrossRef]

Misawa, A.

Oliver, M. K.

Reynaud, F.

S. Maneuf, F. Reynaud, Opt. Commun. 66, 325 (1988).
[CrossRef]

Silberberg, Y.

Sipe, J. E.

Smith, P. W.

Townes, C. H.

R. Y. Chiao, E. Garmire, C. H. Townes, Phys. Rev. Lett. 13, 479 (1964); V. E. Zakharov, A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).
[CrossRef]

Tratnik, M. V.

M. V. Tratnik, J. E. Sipe, Phys. Rev. A 38, 2011 (1988).
[CrossRef] [PubMed]

Vogel, E. M.

Weinberger, D. A.

Weiner, A. M.

Winful, H.

H. Winful, Opt. Lett. 11, 33 (1986).
[CrossRef] [PubMed]

H. Winful, Appl. Phys. Lett. 47, 213 (1985).
[CrossRef]

Winful, H. G.

Wood, D.

Yip, G. L.

Appl. Phys. Lett. (1)

H. Winful, Appl. Phys. Lett. 47, 213 (1985).
[CrossRef]

IEEE J. Lightwave Technol. (1)

A. Brandenburg, IEEE J. Lightwave Technol. LT-4, 1580 (1986).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. R. Menyuk, IEEE J. Quantum Electron. QE-23, 174 (1987).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

S. Maneuf, F. Reynaud, Opt. Commun. 66, 325 (1988).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. A (1)

M. V. Tratnik, J. E. Sipe, Phys. Rev. A 38, 2011 (1988).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

R. Y. Chiao, E. Garmire, C. H. Townes, Phys. Rev. Lett. 13, 479 (1964); V. E. Zakharov, A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).
[CrossRef]

Other (2)

H. Kogelnik, in Integrated Optics, T. Tamir, ed. (Springer-Verlag, Berlin, 1979), p. 15.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989), Secs. 7.1 and 7.2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Numerical simulation of polarization instability in a planar waveguide. Initially almost all of the energy is carried by the fast mode (TE0). Shown is the relative power in the fast mode on propagation, for three different total power levels, 350 kW (long-dashed curve), 450 kW (short-dashed curve), and 550 kW (dotted curve). The onset of the instability is predicted to be ~525 kW. If almost all of the energy is launched into the slow (TM0) mode, no power transfer occurs. The parameters that we used, which are modeled after those in Ref. 1, are N = 1.5, NTMNTE = 2 × 10−4, and deff = 3.5 μm. The initial profile is sech shaped, with a full width at half-maximum of 10 μm and with the electric field vector at an angle of 0.025 rad with the waveguide plane.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

i E e z + 1 2 k e 2 E e y 2 + Γ S 1 E e 2 E e + 2 Γ x 1 E m 2 E e + Γ x 2 E m 2 E e * exp [ - 2 i ( Δ k ) z ] = 0 , i E m z + 1 2 k m 2 E m y 2 + Γ S 2 E m 2 E m + 2 Γ x 1 E e 2 E m + Γ x 2 E e 2 E m * exp [ + 2 i ( Δ k ) z ] = 0 ,
i F e z + 1 2 k 2 F e y 2 + Δ k 2 F e + 2 3 Ω n ( 2 ) d eff × ( F e 2 + F m 2 ) F e + 1 3 Ω n ( 2 ) d eff ( F e 2 + F m 2 ) F e * = 0 , i F m z + 1 2 k 2 F m y 2 - Δ k 2 F m + 2 3 Ω n ( 2 ) d eff × ( F m 2 + F e 2 ) F m + 1 3 Ω n ( 2 ) d eff ( F m 2 + F e 2 ) F m * = 0 ,
d eff = n ( 2 ) N 2 [ d x f ( x ) 2 ] 2 d x n 2 n ( 2 ) f ( x ) 4 ,
w eff = ( d y E 2 ) 2 d y E 4
n ( 2 ) P c w eff d eff = 3 2 Δ n e m ,
L = λ / Δ n e m .

Metrics