Abstract

Comparison of Mie theory calculations of the internal electromagnetic source function for a 120-μm-diameter water droplet with geometrical optics suggests that the field enhancement located at the critical ring region encircling the axis in the forward direction of the droplet can support stimulated Raman scattering as found experimentally.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Jarzembski, V. Srivastava, Appl. Opt. 28, 4962 (1989).
    [CrossRef] [PubMed]
  2. M. A. Jarzembski, Ph.D. dissertation (Department of Physics, New Mexico State University, Las Cruces, N.M., 1990).
  3. P. Chylek, J. D. Pendleton, R. G. Pinnick, Appl. Opt. 24, 3940 (1985).
    [CrossRef] [PubMed]
  4. D. S. Benincasa, P. W. Barber, J.-Z. Zhang, W.-Z. Zhang, W.-F. Hsieh, R. K. Chang, Appl. Opt. 26, 1348 (1987).
    [CrossRef] [PubMed]
  5. C. C. Dobson, J. W. L. Lewis, J. Opt. Soc. Am. A 6, 465 (1989).
    [CrossRef]
  6. N. Bloembergen, Am. J. Phys. 35, 989 (1967).
    [CrossRef]
  7. A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975).
  8. R. Loudon, The Quantum Theory of Light, 2nd ed. (Clarendon, Oxford, 1983).
  9. J. B. Snow, S.-X. Qian, R. K. Chang, Opt. Lett. 10, 37 (1985).
    [CrossRef] [PubMed]
  10. S.-X. Qian, R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
    [CrossRef] [PubMed]
  11. P. Chylek, M. A. Jarzembski, N. Y. Chou, R. G. Pinnick, Appl. Phys. Lett. 49, 1475 (1986).
    [CrossRef]
  12. R. G. Pinnick, P. Chylek, M. A. Jarzembski, E. Creegan, V. Srivastava, G. Fernandez, J. D. Pendleton, A. Biswas, Appl. Opt. 27, 987 (1988).
    [CrossRef] [PubMed]
  13. J.-Z. Zhang, D. H. Leach, R. K. Chang, Opt. Lett. 13, 270 (1988).
    [CrossRef] [PubMed]
  14. R. G. Pinnick, A. Biswas, P. Chylek, R. L. Armstrong, H. Latifi, E. Creegan, V. Srivastava, M. A. Jarzembski, G. Fernandez, Opt. Lett. 13, 494 (1988).
    [CrossRef] [PubMed]
  15. R. G. Pinnick, A. Biswas, R. L. Armstrong, H. Latifi, E. Croogan, V. Srivastava, G. Fernandez, Opt. Lett, 13, 1099 (1988).
    [CrossRef]

1989 (2)

C. C. Dobson, J. W. L. Lewis, J. Opt. Soc. Am. A 6, 465 (1989).
[CrossRef]

M. A. Jarzembski, V. Srivastava, Appl. Opt. 28, 4962 (1989).
[CrossRef] [PubMed]

1988 (4)

1987 (1)

1986 (2)

S.-X. Qian, R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
[CrossRef] [PubMed]

P. Chylek, M. A. Jarzembski, N. Y. Chou, R. G. Pinnick, Appl. Phys. Lett. 49, 1475 (1986).
[CrossRef]

1985 (2)

1967 (1)

N. Bloembergen, Am. J. Phys. 35, 989 (1967).
[CrossRef]

Armstrong, R. L.

R. G. Pinnick, A. Biswas, R. L. Armstrong, H. Latifi, E. Croogan, V. Srivastava, G. Fernandez, Opt. Lett, 13, 1099 (1988).
[CrossRef]

R. G. Pinnick, A. Biswas, P. Chylek, R. L. Armstrong, H. Latifi, E. Creegan, V. Srivastava, M. A. Jarzembski, G. Fernandez, Opt. Lett. 13, 494 (1988).
[CrossRef] [PubMed]

Barber, P. W.

Benincasa, D. S.

Biswas, A.

Bloembergen, N.

N. Bloembergen, Am. J. Phys. 35, 989 (1967).
[CrossRef]

Chang, R. K.

Chou, N. Y.

P. Chylek, M. A. Jarzembski, N. Y. Chou, R. G. Pinnick, Appl. Phys. Lett. 49, 1475 (1986).
[CrossRef]

Chylek, P.

Creegan, E.

Croogan, E.

R. G. Pinnick, A. Biswas, R. L. Armstrong, H. Latifi, E. Croogan, V. Srivastava, G. Fernandez, Opt. Lett, 13, 1099 (1988).
[CrossRef]

Dobson, C. C.

C. C. Dobson, J. W. L. Lewis, J. Opt. Soc. Am. A 6, 465 (1989).
[CrossRef]

Fernandez, G.

Hsieh, W.-F.

Jarzembski, M. A.

Latifi, H.

R. G. Pinnick, A. Biswas, R. L. Armstrong, H. Latifi, E. Croogan, V. Srivastava, G. Fernandez, Opt. Lett, 13, 1099 (1988).
[CrossRef]

R. G. Pinnick, A. Biswas, P. Chylek, R. L. Armstrong, H. Latifi, E. Creegan, V. Srivastava, M. A. Jarzembski, G. Fernandez, Opt. Lett. 13, 494 (1988).
[CrossRef] [PubMed]

Leach, D. H.

Lewis, J. W. L.

C. C. Dobson, J. W. L. Lewis, J. Opt. Soc. Am. A 6, 465 (1989).
[CrossRef]

Loudon, R.

R. Loudon, The Quantum Theory of Light, 2nd ed. (Clarendon, Oxford, 1983).

Pendleton, J. D.

Pinnick, R. G.

Qian, S.-X.

Snow, J. B.

Srivastava, V.

Yariv, A.

A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975).

Zhang, J.-Z.

Zhang, W.-Z.

Am. J. Phys. (1)

N. Bloembergen, Am. J. Phys. 35, 989 (1967).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

P. Chylek, M. A. Jarzembski, N. Y. Chou, R. G. Pinnick, Appl. Phys. Lett. 49, 1475 (1986).
[CrossRef]

J. Opt. Soc. Am. A (1)

C. C. Dobson, J. W. L. Lewis, J. Opt. Soc. Am. A 6, 465 (1989).
[CrossRef]

Opt. Lett, (1)

R. G. Pinnick, A. Biswas, R. L. Armstrong, H. Latifi, E. Croogan, V. Srivastava, G. Fernandez, Opt. Lett, 13, 1099 (1988).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

S.-X. Qian, R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
[CrossRef] [PubMed]

Other (3)

M. A. Jarzembski, Ph.D. dissertation (Department of Physics, New Mexico State University, Las Cruces, N.M., 1990).

A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975).

R. Loudon, The Quantum Theory of Light, 2nd ed. (Clarendon, Oxford, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Three-dimensional plot of the source function S evaluated in the equatorial plane for internal fields (λ = 0.532 μm) for a 120-μm-diameter sphere representing a water droplet with m = 1.332 − i10−8 configured between the normalized radius lines, −1 and +1.

Fig. 2
Fig. 2

Mie theory contour plot of the source function S evaluated for the 120-μm-diameter sphere shown in Fig. 1. Drawn on this plot are rays of energy around the Descartes ray, representing the greatest flow of electromagnetic energy inside and outside the sphere, which causes regions of high enhancement, shown as the dark regions of the high density of contours. Each line of contour represents a per-unit increase in S.

Fig. 3
Fig. 3

Photographs of interaction of an ~120-μm-diameter water droplet with a high-energy Nd:YAG laser beam (λ = 0.532 μm) showing SRS emission for two different directions: (a) θ = 90° (the arrow shows the direction of the laser beam) and (b) θ ~ 37° toward the forward direction of the droplet (the direction of the laser beam coming out of the figure at ~37° to the normal). In (a) no detail of the critical ring is visible. In (b) SRS is shown on the critical ring around θc ~ 21° with no detectable SRS on the axis at the center of the critical ring. SRS observed at the droplet periphery is due to droplet resonances.9,10,14

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S = E 2 / E 0 2 ,
I s = I so exp ( g s l ) ,

Metrics