Abstract

Second-harmonic generation by excitation of guided modes and the surface plasmon in a polyurethane-coated silver grating coupler is presented. In order to study the spectral dependence of the second-harmonic efficiency, two different pump wavelengths are used, 1064 and 1319 nm. For the longer-wavelength pump we observe a large enhancement of the second-harmonic efficiency as the incident angle is scanned through an electromagnetic resonance, whereas for the shorter-wavelength pump the second-harmonic wavelength falls within the absorption band of the polymer, and we observe unexpected minima instead of maxima.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Chemla, J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, New York, 1986), Vol. 1.
  2. R. Reinisch, M. Nevière, H. Akhouairy, J. L. Coutaz, D. Maystre, E. Pic, Opt. Eng. 27, 961 (1988).
  3. Z. Weissman, A. Hardy, E. Marom, S. R. J. Brueck, J. Appl. Phys. 69, 1201 (1991).
    [CrossRef]
  4. O. Sugihara, T. Toda, T. Ogura, T. Kinoshita, K. Sasaki, Opt. Lett. 16, 702 (1991).
    [CrossRef] [PubMed]
  5. J. L. Coutaz, M. Nevière, E. Pic, R. Reinisch, Phys. Rev. B 22, 2227 (1985).
    [CrossRef]
  6. Z. Chen, D. Cui, H. Lu, Y. Zhou, Opt. Lett. 8, 563 (1983).
    [CrossRef]
  7. Z. Chen, H. J. Simon, Opt. Lett. 13, 1008 (1988).
    [CrossRef] [PubMed]

1991 (2)

Z. Weissman, A. Hardy, E. Marom, S. R. J. Brueck, J. Appl. Phys. 69, 1201 (1991).
[CrossRef]

O. Sugihara, T. Toda, T. Ogura, T. Kinoshita, K. Sasaki, Opt. Lett. 16, 702 (1991).
[CrossRef] [PubMed]

1988 (2)

Z. Chen, H. J. Simon, Opt. Lett. 13, 1008 (1988).
[CrossRef] [PubMed]

R. Reinisch, M. Nevière, H. Akhouairy, J. L. Coutaz, D. Maystre, E. Pic, Opt. Eng. 27, 961 (1988).

1986 (1)

D. S. Chemla, J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, New York, 1986), Vol. 1.

1985 (1)

J. L. Coutaz, M. Nevière, E. Pic, R. Reinisch, Phys. Rev. B 22, 2227 (1985).
[CrossRef]

1983 (1)

Akhouairy, H.

R. Reinisch, M. Nevière, H. Akhouairy, J. L. Coutaz, D. Maystre, E. Pic, Opt. Eng. 27, 961 (1988).

Brueck, S. R. J.

Z. Weissman, A. Hardy, E. Marom, S. R. J. Brueck, J. Appl. Phys. 69, 1201 (1991).
[CrossRef]

Chemla, D. S.

D. S. Chemla, J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, New York, 1986), Vol. 1.

Chen, Z.

Coutaz, J. L.

R. Reinisch, M. Nevière, H. Akhouairy, J. L. Coutaz, D. Maystre, E. Pic, Opt. Eng. 27, 961 (1988).

J. L. Coutaz, M. Nevière, E. Pic, R. Reinisch, Phys. Rev. B 22, 2227 (1985).
[CrossRef]

Cui, D.

Hardy, A.

Z. Weissman, A. Hardy, E. Marom, S. R. J. Brueck, J. Appl. Phys. 69, 1201 (1991).
[CrossRef]

Kinoshita, T.

Lu, H.

Marom, E.

Z. Weissman, A. Hardy, E. Marom, S. R. J. Brueck, J. Appl. Phys. 69, 1201 (1991).
[CrossRef]

Maystre, D.

R. Reinisch, M. Nevière, H. Akhouairy, J. L. Coutaz, D. Maystre, E. Pic, Opt. Eng. 27, 961 (1988).

Nevière, M.

R. Reinisch, M. Nevière, H. Akhouairy, J. L. Coutaz, D. Maystre, E. Pic, Opt. Eng. 27, 961 (1988).

J. L. Coutaz, M. Nevière, E. Pic, R. Reinisch, Phys. Rev. B 22, 2227 (1985).
[CrossRef]

Ogura, T.

Pic, E.

R. Reinisch, M. Nevière, H. Akhouairy, J. L. Coutaz, D. Maystre, E. Pic, Opt. Eng. 27, 961 (1988).

J. L. Coutaz, M. Nevière, E. Pic, R. Reinisch, Phys. Rev. B 22, 2227 (1985).
[CrossRef]

Reinisch, R.

R. Reinisch, M. Nevière, H. Akhouairy, J. L. Coutaz, D. Maystre, E. Pic, Opt. Eng. 27, 961 (1988).

J. L. Coutaz, M. Nevière, E. Pic, R. Reinisch, Phys. Rev. B 22, 2227 (1985).
[CrossRef]

Sasaki, K.

Simon, H. J.

Sugihara, O.

Toda, T.

Weissman, Z.

Z. Weissman, A. Hardy, E. Marom, S. R. J. Brueck, J. Appl. Phys. 69, 1201 (1991).
[CrossRef]

Zhou, Y.

Zyss, J.

D. S. Chemla, J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, New York, 1986), Vol. 1.

J. Appl. Phys. (1)

Z. Weissman, A. Hardy, E. Marom, S. R. J. Brueck, J. Appl. Phys. 69, 1201 (1991).
[CrossRef]

Nonlinear Optical Properties of Organic Molecules and Crystals (1)

D. S. Chemla, J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, New York, 1986), Vol. 1.

Opt. Eng. (1)

R. Reinisch, M. Nevière, H. Akhouairy, J. L. Coutaz, D. Maystre, E. Pic, Opt. Eng. 27, 961 (1988).

Opt. Lett. (3)

Phys. Rev. B (1)

J. L. Coutaz, M. Nevière, E. Pic, R. Reinisch, Phys. Rev. B 22, 2227 (1985).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental configuration showing the TM-polarized incident pump beam and the diffracted beams at the fundamental and the SH frequencies. The large arrow represents light coupled to either a guided mode or the SP.

Fig. 2
Fig. 2

Linear reflectivity, in TM polarization, of the device for light with a wavelength of 1319 nm. The angular separation between the measured points is 0.05°.

Fig. 3
Fig. 3

Linear reflectivity of the device for light with wavelengths of 659 nm (upper trace) and 532 nm (lower trace) as a function of the incident angle (θ in Fig. 1). The solid curve is calculated by using a refractive index of the PUSC of 1.6. The arrow indicates the Brewster angle.

Fig. 4
Fig. 4

SH peak power detected in the specular reflectance as a function of the incident angle. The pump has a wavelength of 1319 nm, and its peak power is 40 kW. The angular separation between points is 0.05°.

Fig. 5
Fig. 5

Linear reflectivity of the device for light with a wavelength of 1064 nm. The angular separation between the measured points is 0.1°. The M line of the seventh TM mode has been seen on a screen close to 21.5°, but its angular direction is not reached by our deterction setup.

Fig. 6
Fig. 6

SH peak power detected in the specular reflectance. The pump wavelength is 1064 nm, and the peak power is 2.5 MW. The angular separation between points is 0.05°.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k x i + 2 π d = k r ,

Metrics