Abstract

We propose and demonstrate a novel type of frequency-selective optical memory that writes and reads the data in both the time domain and the frequency domain. Temporal 16-bit data were stored by accumulated-photon-echo bit-by-bit storage at 103 frequency addresses within the inhomogeneous line of the 7F05D0 transition of Eu3+:Y2SiO5, which yields a total memory capacity of 1.6 kbits in a single spot of 240-μm diameter. The keys to the success of this experiment are this material’s long dephasing time and lack of spectral diffusion.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. E. Moerner, ed., Persistent Spectral Hole-Burning: Science and Applications, Vol. 44 of Topics in Current Physics (Springer-Verlag, Berlin, 1988).
    [Crossref]
  2. T. W. Mossberg, Opt. Lett. 7, 77 (1982); W. R. Babbitt, Y. S. Bai, T. W. Mossberg, Proc. Soc. Photo-Opt. Instrum. Eng. 639, 240 (1986).
    [Crossref] [PubMed]
  3. P. Saari, R. Kaarli, A. Rebane, J. Opt. Soc. Am. B 3, 527 (1986); A. Rebane, J. Aaviksoo, J. Kuhl, Appl. Phys. Lett. 54, 93 (1989).
    [Crossref]
  4. M. Mitsunaga, N. Uesugi, J. Lumin. 48/49, 459 (1991); Opt. Lett. 16, 264 (1991).
    [PubMed]
  5. R. M. Macfarlane, R. M. Shelby, Opt. Commun. 39, 169 (1981).
    [Crossref]
  6. M. Mitsunaga, N. Uesugi, Opt. Lett. 15, 195 (1990).
    [Crossref] [PubMed]
  7. R. M. Shelby, R. M. Macfarlane, Phys. Rev. Lett. 45, 1098 (1980).
    [Crossref]
  8. J. Huang, J. M. Zhang, A. Lezama, T. W. Mossberg, Phys. Rev. Lett. 63, 78 (1989).
    [Crossref] [PubMed]
  9. S. Kröll, E. Y. Xu, M. K. Kim, M. Mitsunaga, R. Kachru, Phys. Rev. B 41, 11568 (1990).
    [Crossref]

1991 (1)

M. Mitsunaga, N. Uesugi, J. Lumin. 48/49, 459 (1991); Opt. Lett. 16, 264 (1991).
[PubMed]

1990 (2)

M. Mitsunaga, N. Uesugi, Opt. Lett. 15, 195 (1990).
[Crossref] [PubMed]

S. Kröll, E. Y. Xu, M. K. Kim, M. Mitsunaga, R. Kachru, Phys. Rev. B 41, 11568 (1990).
[Crossref]

1989 (1)

J. Huang, J. M. Zhang, A. Lezama, T. W. Mossberg, Phys. Rev. Lett. 63, 78 (1989).
[Crossref] [PubMed]

1986 (1)

1982 (1)

1981 (1)

R. M. Macfarlane, R. M. Shelby, Opt. Commun. 39, 169 (1981).
[Crossref]

1980 (1)

R. M. Shelby, R. M. Macfarlane, Phys. Rev. Lett. 45, 1098 (1980).
[Crossref]

Huang, J.

J. Huang, J. M. Zhang, A. Lezama, T. W. Mossberg, Phys. Rev. Lett. 63, 78 (1989).
[Crossref] [PubMed]

Kaarli, R.

Kachru, R.

S. Kröll, E. Y. Xu, M. K. Kim, M. Mitsunaga, R. Kachru, Phys. Rev. B 41, 11568 (1990).
[Crossref]

Kim, M. K.

S. Kröll, E. Y. Xu, M. K. Kim, M. Mitsunaga, R. Kachru, Phys. Rev. B 41, 11568 (1990).
[Crossref]

Kröll, S.

S. Kröll, E. Y. Xu, M. K. Kim, M. Mitsunaga, R. Kachru, Phys. Rev. B 41, 11568 (1990).
[Crossref]

Lezama, A.

J. Huang, J. M. Zhang, A. Lezama, T. W. Mossberg, Phys. Rev. Lett. 63, 78 (1989).
[Crossref] [PubMed]

Macfarlane, R. M.

R. M. Macfarlane, R. M. Shelby, Opt. Commun. 39, 169 (1981).
[Crossref]

R. M. Shelby, R. M. Macfarlane, Phys. Rev. Lett. 45, 1098 (1980).
[Crossref]

Mitsunaga, M.

M. Mitsunaga, N. Uesugi, J. Lumin. 48/49, 459 (1991); Opt. Lett. 16, 264 (1991).
[PubMed]

S. Kröll, E. Y. Xu, M. K. Kim, M. Mitsunaga, R. Kachru, Phys. Rev. B 41, 11568 (1990).
[Crossref]

M. Mitsunaga, N. Uesugi, Opt. Lett. 15, 195 (1990).
[Crossref] [PubMed]

Mossberg, T. W.

Rebane, A.

Saari, P.

Shelby, R. M.

R. M. Macfarlane, R. M. Shelby, Opt. Commun. 39, 169 (1981).
[Crossref]

R. M. Shelby, R. M. Macfarlane, Phys. Rev. Lett. 45, 1098 (1980).
[Crossref]

Uesugi, N.

M. Mitsunaga, N. Uesugi, J. Lumin. 48/49, 459 (1991); Opt. Lett. 16, 264 (1991).
[PubMed]

M. Mitsunaga, N. Uesugi, Opt. Lett. 15, 195 (1990).
[Crossref] [PubMed]

Xu, E. Y.

S. Kröll, E. Y. Xu, M. K. Kim, M. Mitsunaga, R. Kachru, Phys. Rev. B 41, 11568 (1990).
[Crossref]

Zhang, J. M.

J. Huang, J. M. Zhang, A. Lezama, T. W. Mossberg, Phys. Rev. Lett. 63, 78 (1989).
[Crossref] [PubMed]

J. Lumin. (1)

M. Mitsunaga, N. Uesugi, J. Lumin. 48/49, 459 (1991); Opt. Lett. 16, 264 (1991).
[PubMed]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

R. M. Macfarlane, R. M. Shelby, Opt. Commun. 39, 169 (1981).
[Crossref]

Opt. Lett. (2)

Phys. Rev. B (1)

S. Kröll, E. Y. Xu, M. K. Kim, M. Mitsunaga, R. Kachru, Phys. Rev. B 41, 11568 (1990).
[Crossref]

Phys. Rev. Lett. (2)

R. M. Shelby, R. M. Macfarlane, Phys. Rev. Lett. 45, 1098 (1980).
[Crossref]

J. Huang, J. M. Zhang, A. Lezama, T. W. Mossberg, Phys. Rev. Lett. 63, 78 (1989).
[Crossref] [PubMed]

Other (1)

W. E. Moerner, ed., Persistent Spectral Hole-Burning: Science and Applications, Vol. 44 of Topics in Current Physics (Springer-Verlag, Berlin, 1988).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Inhomogeneous absorption spectra and readout processes in (a) hole-burning memory, (b) photon-echo memory, and (c) hybrid memory. In (a) one has N randomly accessible addresses that have one bit of information. In (b) only one address is accessible that has N bits of information. In (c) M addresses are randomly accessible that contain N/M bits of information.

Fig. 2
Fig. 2

Accumulated photon-echo waveform of the 7F05D0 transition in Eu3+:Y2SiO5 at 6 K after excitation of multiple pairs of pulses with different pulse separation (10, 15, 20 μs, …). The read pulse applied at t = 0 is unseen owing to the acousto-optic shutter.

Fig. 3
Fig. 3

Accumulated photon-echo waveforms for the 7F05D0 transition of Eu3+:Y2SiO5 at 6 K representing the ascii-coded periodic table of elements as readout data of the hybrid optical memory. Each address has 16 bits, with a bit separation of 3 μs in the time domain and an address separation of 40 MHz in the frequency domain. The read pulses are applied at t = 0. All the data are stored and recalled in a single laser spot. Only 24 out of 103 addresses are shown.

Metrics