Abstract

We demonstrate how the frequency of a single-mode cw dye laser can be translated by 1.772 GHz using stimulated Raman scattering in sodium vapor. The output of a sodium Raman laser, the frequency-translated beam, is shown to be highly correlated in frequency with the dye-laser pump beam. The bandwidth of the 1.772-GHz heterodyne beat signal between the two beams is found to be as narrow as 440 Hz, much narrower than the root-mean-square frequency jitter (~1 MHz) of the dye-laser pump beam. The Raman laser method can be used with materials other than sodium, such as cesium or magnesium, to obtain frequency translations of a magnitude that may not be easily attainable with acousto-optic or electro-optic techniques.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Shahriar, P. R. Hemmer, Phys. Rev. Lett. 65, 1865 (1990).
    [CrossRef] [PubMed]
  2. J. E. Thomas, S. Ezekiel, C. C. Leiby, R. H. Picard, C. R. Willis, Opt. Lett. 6, 298 (1981); J. E. Thomas, P. R. Hemmer, S. Ezekiel, C. C. Leiby, R. H. Picard, C. R. Willis, Phys. Rev. Lett. 48, 867 (1982).
    [CrossRef] [PubMed]
  3. P. R. Hemmer, S. Ezekiel, C. C. Leiby, Opt. Lett. 8, 440 (1983); P. R. Hemmer, G. P. Ontai, S. Ezekiel, J. Opt. Soc. Am. B 3, 219 (1986).
    [CrossRef] [PubMed]
  4. E. Bava, A. Godone, G. Giusfredi, C. Novero, IEEE J. Quantum Electron. QE-23, 455 (1987).
    [CrossRef]
  5. P. Kumar, J. H. Shapiro, Opt. Lett. 10, 226 (1985).
    [CrossRef] [PubMed]
  6. Raman scattering in the forward direction is intrinsically Doppler free. The bandwidth of the Raman gain in our experiment is determined by the homogeneous broadening mechanisms such as collision broadening and transit-time broadening. See P. Kumar, B. M. Poelker, in Digest of Optical Society of America Annual Meeting (Optical Society of America, Washington, D.C., 1988), p. 92; M. Poelker, P. Kumar, “Sodium Raman laser: direct measurements of the narrow-band Raman gain,” submitted to Opt. Lett.
  7. T. W. Hänsch, I. S. Shanin, A. L. Schawlow, Phys. Rev. Lett. 27, 707 (1971).
    [CrossRef]
  8. M. T. Gruneisen, K. R. MacDonald, R. W. Boyd, J. Opt. Soc. Am. B 5, 123 (1988).
    [CrossRef]
  9. We thank one of the referees for bringing this point to our attention.
  10. O. Kocharovskaya, R. Li, P. Mandel, Opt. Commun. 77, 215 (1990); G. S. Agarwal, Phys. Rev. Lett. 67, 980 (1991).
    [CrossRef] [PubMed]

1990 (2)

M. S. Shahriar, P. R. Hemmer, Phys. Rev. Lett. 65, 1865 (1990).
[CrossRef] [PubMed]

O. Kocharovskaya, R. Li, P. Mandel, Opt. Commun. 77, 215 (1990); G. S. Agarwal, Phys. Rev. Lett. 67, 980 (1991).
[CrossRef] [PubMed]

1988 (1)

1987 (1)

E. Bava, A. Godone, G. Giusfredi, C. Novero, IEEE J. Quantum Electron. QE-23, 455 (1987).
[CrossRef]

1985 (1)

1983 (1)

1981 (1)

1971 (1)

T. W. Hänsch, I. S. Shanin, A. L. Schawlow, Phys. Rev. Lett. 27, 707 (1971).
[CrossRef]

Bava, E.

E. Bava, A. Godone, G. Giusfredi, C. Novero, IEEE J. Quantum Electron. QE-23, 455 (1987).
[CrossRef]

Boyd, R. W.

Ezekiel, S.

Giusfredi, G.

E. Bava, A. Godone, G. Giusfredi, C. Novero, IEEE J. Quantum Electron. QE-23, 455 (1987).
[CrossRef]

Godone, A.

E. Bava, A. Godone, G. Giusfredi, C. Novero, IEEE J. Quantum Electron. QE-23, 455 (1987).
[CrossRef]

Gruneisen, M. T.

Hänsch, T. W.

T. W. Hänsch, I. S. Shanin, A. L. Schawlow, Phys. Rev. Lett. 27, 707 (1971).
[CrossRef]

Hemmer, P. R.

Kocharovskaya, O.

O. Kocharovskaya, R. Li, P. Mandel, Opt. Commun. 77, 215 (1990); G. S. Agarwal, Phys. Rev. Lett. 67, 980 (1991).
[CrossRef] [PubMed]

Kumar, P.

P. Kumar, J. H. Shapiro, Opt. Lett. 10, 226 (1985).
[CrossRef] [PubMed]

Raman scattering in the forward direction is intrinsically Doppler free. The bandwidth of the Raman gain in our experiment is determined by the homogeneous broadening mechanisms such as collision broadening and transit-time broadening. See P. Kumar, B. M. Poelker, in Digest of Optical Society of America Annual Meeting (Optical Society of America, Washington, D.C., 1988), p. 92; M. Poelker, P. Kumar, “Sodium Raman laser: direct measurements of the narrow-band Raman gain,” submitted to Opt. Lett.

Leiby, C. C.

Li, R.

O. Kocharovskaya, R. Li, P. Mandel, Opt. Commun. 77, 215 (1990); G. S. Agarwal, Phys. Rev. Lett. 67, 980 (1991).
[CrossRef] [PubMed]

MacDonald, K. R.

Mandel, P.

O. Kocharovskaya, R. Li, P. Mandel, Opt. Commun. 77, 215 (1990); G. S. Agarwal, Phys. Rev. Lett. 67, 980 (1991).
[CrossRef] [PubMed]

Novero, C.

E. Bava, A. Godone, G. Giusfredi, C. Novero, IEEE J. Quantum Electron. QE-23, 455 (1987).
[CrossRef]

Picard, R. H.

Poelker, B. M.

Raman scattering in the forward direction is intrinsically Doppler free. The bandwidth of the Raman gain in our experiment is determined by the homogeneous broadening mechanisms such as collision broadening and transit-time broadening. See P. Kumar, B. M. Poelker, in Digest of Optical Society of America Annual Meeting (Optical Society of America, Washington, D.C., 1988), p. 92; M. Poelker, P. Kumar, “Sodium Raman laser: direct measurements of the narrow-band Raman gain,” submitted to Opt. Lett.

Schawlow, A. L.

T. W. Hänsch, I. S. Shanin, A. L. Schawlow, Phys. Rev. Lett. 27, 707 (1971).
[CrossRef]

Shahriar, M. S.

M. S. Shahriar, P. R. Hemmer, Phys. Rev. Lett. 65, 1865 (1990).
[CrossRef] [PubMed]

Shanin, I. S.

T. W. Hänsch, I. S. Shanin, A. L. Schawlow, Phys. Rev. Lett. 27, 707 (1971).
[CrossRef]

Shapiro, J. H.

Thomas, J. E.

Willis, C. R.

IEEE J. Quantum Electron. (1)

E. Bava, A. Godone, G. Giusfredi, C. Novero, IEEE J. Quantum Electron. QE-23, 455 (1987).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

O. Kocharovskaya, R. Li, P. Mandel, Opt. Commun. 77, 215 (1990); G. S. Agarwal, Phys. Rev. Lett. 67, 980 (1991).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. Lett. (2)

M. S. Shahriar, P. R. Hemmer, Phys. Rev. Lett. 65, 1865 (1990).
[CrossRef] [PubMed]

T. W. Hänsch, I. S. Shanin, A. L. Schawlow, Phys. Rev. Lett. 27, 707 (1971).
[CrossRef]

Other (2)

We thank one of the referees for bringing this point to our attention.

Raman scattering in the forward direction is intrinsically Doppler free. The bandwidth of the Raman gain in our experiment is determined by the homogeneous broadening mechanisms such as collision broadening and transit-time broadening. See P. Kumar, B. M. Poelker, in Digest of Optical Society of America Annual Meeting (Optical Society of America, Washington, D.C., 1988), p. 92; M. Poelker, P. Kumar, “Sodium Raman laser: direct measurements of the narrow-band Raman gain,” submitted to Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup. G, electronic amplifier.

Fig. 2
Fig. 2

Spectrum of the beat signal between the Raman-laser beam and the pump beam in the vicinity of 1.772 GHz. The horizontal scale is 200 kHz per division, and the vertical scale is 6 dB per division. The resolution bandwidth of the spectrum analyzer was 3 kHz, and the sweep time was 6.7 s.

Fig. 3
Fig. 3

Expanded view of the center peak in Fig. 2. The horizontal frequency scale is 2 kHz per division, and the vertical scale is 6 dB per division. The resolution bandwidth of the spectrum analyzer was 215 Hz, and the sweep time was 2.8 s. The trace was video averaged 10 times. The FWHM bandwidth of this beat is 440 Hz.

Metrics