Abstract

A new physical mechanism is proposed for generating transient phase gratings in transparent pyroelectric materials. The mechanism combines the pyroelectric and electro-optic effects to convert spatial intensity variations into transient phase gratings. The grating diffraction efficiency increases with a figure of merit that is proportional to the pyroelectric, electro-optic, and absorption coefficients and is inversely proportional to the specific heat. The grating response time is proportional to the specific heat and inversely proportional to the thermal conductivity. Diffraction efficiencies that approach unity are predicted in several readily available electro-optic materials with modest pulse energies from Q-switched Nd:YAG lasers. Observation with cw laser sources is also proposed. The pyro-electro-optic mechanism is compared with other known mechanisms.

© 1991 Optical Society of America

Full Article  |  PDF Article

Corrections

Stephen Ducharme, "Pyro-electro-optic phase gratings: erratum," Opt. Lett. 17, 459-459 (1992)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-17-6-459

References

  • View by:
  • |
  • |
  • |

  1. P. Nye, Physical Properties of Crystals (Oxford U. Press, London, 1967).
  2. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989).
  3. P. Kalman, A. Toth, Ferroelectrics 75, 173 (1987).
    [CrossRef]
  4. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
  5. K.-H. Hellwege, A. M. Hellwege, Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series, Vol. 3, No. 11 (Springer-Verlag, Berlin, 1979).
  6. S. Ducharme, J. Feinberg, IEEE J. Quantum Electron. QE-23, 2116 (1987).
    [CrossRef]
  7. Y. S. Touloukian, E. H. Buyco, Specific Heat:Nonmetallic Solids (Plenum, New York, 1970).
  8. C. M. Bhandari, D. M. Rowe, Thermal Conduction in Semiconductors (Wiley, New York, 1988).
  9. G. F. Lipscomb, A. F. Garito, R. S. Narang, Appl. Phys. Lett. 38, 663 (1981).
    [CrossRef]
  10. K. Sutter, C. Bosshard, M. Ehrensperger, P. Günter, R. J. Twieg, IEEE J. Quantum Electron. 24, 2362 (1988).
    [CrossRef]
  11. R. W. Hellwarth, J. Opt. Soc. Am. 67, 1 (1977).
    [CrossRef]

1988 (1)

K. Sutter, C. Bosshard, M. Ehrensperger, P. Günter, R. J. Twieg, IEEE J. Quantum Electron. 24, 2362 (1988).
[CrossRef]

1987 (2)

P. Kalman, A. Toth, Ferroelectrics 75, 173 (1987).
[CrossRef]

S. Ducharme, J. Feinberg, IEEE J. Quantum Electron. QE-23, 2116 (1987).
[CrossRef]

1981 (1)

G. F. Lipscomb, A. F. Garito, R. S. Narang, Appl. Phys. Lett. 38, 663 (1981).
[CrossRef]

1977 (1)

1969 (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Bhandari, C. M.

C. M. Bhandari, D. M. Rowe, Thermal Conduction in Semiconductors (Wiley, New York, 1988).

Bosshard, C.

K. Sutter, C. Bosshard, M. Ehrensperger, P. Günter, R. J. Twieg, IEEE J. Quantum Electron. 24, 2362 (1988).
[CrossRef]

Buyco, E. H.

Y. S. Touloukian, E. H. Buyco, Specific Heat:Nonmetallic Solids (Plenum, New York, 1970).

Ducharme, S.

S. Ducharme, J. Feinberg, IEEE J. Quantum Electron. QE-23, 2116 (1987).
[CrossRef]

Ehrensperger, M.

K. Sutter, C. Bosshard, M. Ehrensperger, P. Günter, R. J. Twieg, IEEE J. Quantum Electron. 24, 2362 (1988).
[CrossRef]

Feinberg, J.

S. Ducharme, J. Feinberg, IEEE J. Quantum Electron. QE-23, 2116 (1987).
[CrossRef]

Garito, A. F.

G. F. Lipscomb, A. F. Garito, R. S. Narang, Appl. Phys. Lett. 38, 663 (1981).
[CrossRef]

Günter, P.

K. Sutter, C. Bosshard, M. Ehrensperger, P. Günter, R. J. Twieg, IEEE J. Quantum Electron. 24, 2362 (1988).
[CrossRef]

Hellwarth, R. W.

Hellwege, A. M.

K.-H. Hellwege, A. M. Hellwege, Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series, Vol. 3, No. 11 (Springer-Verlag, Berlin, 1979).

Hellwege, K.-H.

K.-H. Hellwege, A. M. Hellwege, Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series, Vol. 3, No. 11 (Springer-Verlag, Berlin, 1979).

Kalman, P.

P. Kalman, A. Toth, Ferroelectrics 75, 173 (1987).
[CrossRef]

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Lipscomb, G. F.

G. F. Lipscomb, A. F. Garito, R. S. Narang, Appl. Phys. Lett. 38, 663 (1981).
[CrossRef]

Narang, R. S.

G. F. Lipscomb, A. F. Garito, R. S. Narang, Appl. Phys. Lett. 38, 663 (1981).
[CrossRef]

Nye, P.

P. Nye, Physical Properties of Crystals (Oxford U. Press, London, 1967).

Rowe, D. M.

C. M. Bhandari, D. M. Rowe, Thermal Conduction in Semiconductors (Wiley, New York, 1988).

Sutter, K.

K. Sutter, C. Bosshard, M. Ehrensperger, P. Günter, R. J. Twieg, IEEE J. Quantum Electron. 24, 2362 (1988).
[CrossRef]

Toth, A.

P. Kalman, A. Toth, Ferroelectrics 75, 173 (1987).
[CrossRef]

Touloukian, Y. S.

Y. S. Touloukian, E. H. Buyco, Specific Heat:Nonmetallic Solids (Plenum, New York, 1970).

Twieg, R. J.

K. Sutter, C. Bosshard, M. Ehrensperger, P. Günter, R. J. Twieg, IEEE J. Quantum Electron. 24, 2362 (1988).
[CrossRef]

Yariv, A.

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989).

Appl. Phys. Lett. (1)

G. F. Lipscomb, A. F. Garito, R. S. Narang, Appl. Phys. Lett. 38, 663 (1981).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Ferroelectrics (1)

P. Kalman, A. Toth, Ferroelectrics 75, 173 (1987).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. Sutter, C. Bosshard, M. Ehrensperger, P. Günter, R. J. Twieg, IEEE J. Quantum Electron. 24, 2362 (1988).
[CrossRef]

S. Ducharme, J. Feinberg, IEEE J. Quantum Electron. QE-23, 2116 (1987).
[CrossRef]

J. Opt. Soc. Am. (1)

Other (5)

Y. S. Touloukian, E. H. Buyco, Specific Heat:Nonmetallic Solids (Plenum, New York, 1970).

C. M. Bhandari, D. M. Rowe, Thermal Conduction in Semiconductors (Wiley, New York, 1988).

K.-H. Hellwege, A. M. Hellwege, Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series, Vol. 3, No. 11 (Springer-Verlag, Berlin, 1979).

P. Nye, Physical Properties of Crystals (Oxford U. Press, London, 1967).

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Diagram of PEO grating formation and readout (for simplicity, refraction at the sample interfaces is not shown). Two mutually coherent beams k1 and k2 intersect at an angle 2θ in the material and form a phase grating with wave vector kg. A third beam k3 counter-propagating with beam k2 diffracts from the grating to form the signal beam k4. The grating planes (horizontal stripes) are also shown.

Tables (1)

Tables Icon

Table 1 Material Properties and Derived PEO Electro-Optic Figures of Merit Fi for Representative Electro-Optic Crystalsa

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

c ˜ T t = κ 2 T z 2 + α I - K ( T - T 0 ) ,
T = T 0 + α I 0 K [ 1 - exp ( - γ t ) ] + δ α I 0 κ k g 2 [ 1 - exp ( - Γ t ) ] cos ( k g z ) ,
Δ n i = δ F i I 0 Γ [ 1 - exp ( - Γ t ) ] ,
F i = α i n i 3 r i j p j 2 c ˜ 0 .
η i = sin 2 { π L u i λ cos θ δ F i I 0 Γ [ 1 - exp ( - Γ t ) ] } .
S i = Δ n i I 0 τ = F i Γ τ [ 1 - exp ( - Γ τ ) ] .

Metrics