Abstract

The tested light is projected onto an arrangement composed of two special spiral gratings, in which the second spiral grating is positioned at the Talbot image of the first one. From the shapes of the resultant moiré fringes, the quality of collimation of the tested light can be easily checked.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Silva, Appl. Opt. 10, 1980 (1971).
    [CrossRef]
  2. J. C. Fouere, D. Malacara, Appl. Opt. 13, 1322 (1974).
    [CrossRef] [PubMed]
  3. S. Yokozeki, K. Patorski, K. Ohnishi, Opt. Commun. 14, 401 (1975).
    [CrossRef]
  4. K. Patorski, S. Yokozeki, T. Suzuki, Appl. Opt. 15, 1234 (1976).
    [CrossRef] [PubMed]
  5. M. P. Kothiyal, R. S. Sirohi, Appl. Opt. 26, 4056 (1987).
    [CrossRef] [PubMed]

1987 (1)

1976 (1)

1975 (1)

S. Yokozeki, K. Patorski, K. Ohnishi, Opt. Commun. 14, 401 (1975).
[CrossRef]

1974 (1)

1971 (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical arrangement for measuring the collimated light. CL, collimating lens; SG’s, special spiral gratings; OP, observation plane.

Fig. 2
Fig. 2

Diagram of SG1.

Fig. 3
Fig. 3

Diagram of SG2.

Fig. 4
Fig. 4

Moiré fringes for (a) quasi-collimated light, (b) divergent light, and (c) convergent light.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

t 1 ( r , θ ) = 1 2 + 1 2 cos ( 2 π r p - 4 θ ) ,
t 2 ( r , θ ) = 1 2 + 1 2 cos ( 2 π r p + 4 θ ) ,
t 1 ( r , θ ) = 1 2 + 1 2 cos ( 2 π r p - 4 θ ) ,
I ( r , θ ) = t 1 ( r , θ ) t 2 ( r , θ ) 2 .
I M ( r , θ ) ~ cos ( 2 π r p - 2 π r p - 8 θ ) .
2 π r p - 2 π r p - 8 θ = 2 N π ,             N = 0 , 1 , 7.
θ = - 1 4 N π ,             N = 0 , 1 , 7.
r = p p p - p 4 π ( θ + π 4 N ) = k ( θ + π 4 N ) ,             N = 0 , 1 , 7.

Metrics