Abstract

What is to our knowledge the first high-density (>1012 bits/cm3) optical recording of digital information in a multilayered, three-dimensional format is reported. Information is written as submicrometer volume elements of increased refractive index in a photopolymer by two-photon excitation of a photoinitiator at the waist of a highly focused beam from a colliding-pulse mode-locked laser. Quadratic dependence of two-photon excitation on intensity confines polymerization to the focal volume. Information is read with sufficient axial resolution by differential interference contrast microscopy. This write-once, read-many technique should increase the capacity of the spinning disk format by 100-fold.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. K. Swainson, S. D. Kramer, U.S. patents4,466,080 (1984).W. K. Swainson, S. D. Kramer, U.S. patents4,471,470 (1984).
  2. D. A. Parthenopolous, P. M. Rentzepis, Science 245, 848 (1989).
  3. W. Denk, J. H. Strickler, W. W. Webb, Science 248, 73 (1990).
    [CrossRef] [PubMed]
  4. J. H. Strickler, W. W. Webb, Proc. Soc. Photo-Opt. Instrum. Eng. 1398, 26 (1991).
  5. M. Goeppert-Mayer, Ann. Phys. 9, 273 (1931).
    [CrossRef]
  6. L. d’Auria, J. P. Huignard, C. Slezak, E. Spitz, Appl. Opt. 13, 808 (1974).
    [CrossRef] [PubMed]
  7. G. Nomarski, J. Phys. Radium 16, 9s (1955).
  8. W. Denk, W. W. Webb, Appl. Opt. 29, 2382 (1990).
    [CrossRef] [PubMed]

1991 (1)

J. H. Strickler, W. W. Webb, Proc. Soc. Photo-Opt. Instrum. Eng. 1398, 26 (1991).

1990 (2)

W. Denk, J. H. Strickler, W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

W. Denk, W. W. Webb, Appl. Opt. 29, 2382 (1990).
[CrossRef] [PubMed]

1989 (1)

D. A. Parthenopolous, P. M. Rentzepis, Science 245, 848 (1989).

1974 (1)

1955 (1)

G. Nomarski, J. Phys. Radium 16, 9s (1955).

1931 (1)

M. Goeppert-Mayer, Ann. Phys. 9, 273 (1931).
[CrossRef]

d’Auria, L.

Denk, W.

W. Denk, J. H. Strickler, W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

W. Denk, W. W. Webb, Appl. Opt. 29, 2382 (1990).
[CrossRef] [PubMed]

Goeppert-Mayer, M.

M. Goeppert-Mayer, Ann. Phys. 9, 273 (1931).
[CrossRef]

Huignard, J. P.

Kramer, S. D.

W. K. Swainson, S. D. Kramer, U.S. patents4,466,080 (1984).W. K. Swainson, S. D. Kramer, U.S. patents4,471,470 (1984).

Nomarski, G.

G. Nomarski, J. Phys. Radium 16, 9s (1955).

Parthenopolous, D. A.

D. A. Parthenopolous, P. M. Rentzepis, Science 245, 848 (1989).

Rentzepis, P. M.

D. A. Parthenopolous, P. M. Rentzepis, Science 245, 848 (1989).

Slezak, C.

Spitz, E.

Strickler, J. H.

J. H. Strickler, W. W. Webb, Proc. Soc. Photo-Opt. Instrum. Eng. 1398, 26 (1991).

W. Denk, J. H. Strickler, W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Swainson, W. K.

W. K. Swainson, S. D. Kramer, U.S. patents4,466,080 (1984).W. K. Swainson, S. D. Kramer, U.S. patents4,471,470 (1984).

Webb, W. W.

J. H. Strickler, W. W. Webb, Proc. Soc. Photo-Opt. Instrum. Eng. 1398, 26 (1991).

W. Denk, J. H. Strickler, W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

W. Denk, W. W. Webb, Appl. Opt. 29, 2382 (1990).
[CrossRef] [PubMed]

Ann. Phys. (1)

M. Goeppert-Mayer, Ann. Phys. 9, 273 (1931).
[CrossRef]

Appl. Opt. (2)

J. Phys. Radium (1)

G. Nomarski, J. Phys. Radium 16, 9s (1955).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

J. H. Strickler, W. W. Webb, Proc. Soc. Photo-Opt. Instrum. Eng. 1398, 26 (1991).

Science (2)

D. A. Parthenopolous, P. M. Rentzepis, Science 245, 848 (1989).

W. Denk, J. H. Strickler, W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Other (1)

W. K. Swainson, S. D. Kramer, U.S. patents4,466,080 (1984).W. K. Swainson, S. D. Kramer, U.S. patents4,471,470 (1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Experimental apparatus for writing and reading 3-D refractile optical memories. For recording, 100-fs pulses from a colliding-pulse mode-locked dye laser are scanned by a computer-controlled laser scanning confocal microscope in programmed patterns. The scanning beam is focused through a 1.4-N.A. objective lens of an inverted microscope into the specimen on the stage. The focus level is adjusted by a stepper motor also under control of the computer. The optical memory is read by using DIC optics and 488-nm light from an Ar+-ion laser focused into the specimen; the interference modulated transmitted light is detected through the photomultiplier of the laser scanning microscope.

Fig. 2
Fig. 2

A 3-D memory stack. (a) A pair of images of adjacent random bit planes taken from identical xy coordinates in a stack that was written as a 3-D optical memory; the planes are separated by ~3 μm in the longitudinal direction, and bits are separated by ~1 μm center to center in the transverse direction (density 0.3 × 1012 bits/cm3). (b) A longitudinal cross section through a stack of 10 such planes; a second-order background subtraction has been digitally performed to remove the field ramp produced by the DIC imaging method. (c) Longitudinal section through the central region of a 25-layer memory stack of density 1.3 × 1012 bits/cm3. The scale bars are 5 μm.

Metrics