Abstract

We investigate an incremental recording technique for multiplexed hologram storage in photorefractive crystals, in which each hologram is recorded with multiple short exposures. The performance is theoretically compared with that of scheduled (single exposure per hologram) recording. Our analysis shows that this technique systematically controls the signal uniformity and can also decrease the total recording time. We present an experimental demonstration with LiNbO3 using a binary orthogonal phase-code addressing technique.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Blotekjaer, Appl. Opt. 18, 57 (1979).
    [CrossRef] [PubMed]
  2. D. Psaltis, D. Brady, K. Wagner, Appl. Opt. 27, 1752 (1988).
    [CrossRef]
  3. E. Maniloff, K. Johnson, Opt. Eng. 29, 225 (1990).
    [CrossRef]
  4. D. Anderson, D. Lininger, Appl. Opt. 26, 5031 (1987).
    [CrossRef] [PubMed]
  5. E. Paek, J. Wullert, J. Patel, Jpn. J. Appl. Phys. 29, 1332 (1990).
    [CrossRef]
  6. J. T. LaMacchia, D. L. White, Appl. Opt. 7, 91 (1968).
    [CrossRef] [PubMed]
  7. T. F. Krile, M. O. Hagler, W. D. Redus, J. F. Walkup, Appl. Opt. 18, 52 (1979).
    [CrossRef] [PubMed]
  8. Y. Taketomi, J. Ford, H. Sasaki, J. Ma, Y. Fainman, S. Lee, J. Feinberg, in Digest of Meeting on Optical Computing (Optical Society of America, Washington, D.C., 1991), p. 268.
  9. C. Denz, G. Pauliat, G. Roosen, T. Tschudi, in Digest of Meeting on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1991), p. 122.

1990 (2)

E. Maniloff, K. Johnson, Opt. Eng. 29, 225 (1990).
[CrossRef]

E. Paek, J. Wullert, J. Patel, Jpn. J. Appl. Phys. 29, 1332 (1990).
[CrossRef]

1988 (1)

1987 (1)

1979 (2)

1968 (1)

Anderson, D.

Blotekjaer, K.

Brady, D.

Denz, C.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, in Digest of Meeting on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1991), p. 122.

Fainman, Y.

Y. Taketomi, J. Ford, H. Sasaki, J. Ma, Y. Fainman, S. Lee, J. Feinberg, in Digest of Meeting on Optical Computing (Optical Society of America, Washington, D.C., 1991), p. 268.

Feinberg, J.

Y. Taketomi, J. Ford, H. Sasaki, J. Ma, Y. Fainman, S. Lee, J. Feinberg, in Digest of Meeting on Optical Computing (Optical Society of America, Washington, D.C., 1991), p. 268.

Ford, J.

Y. Taketomi, J. Ford, H. Sasaki, J. Ma, Y. Fainman, S. Lee, J. Feinberg, in Digest of Meeting on Optical Computing (Optical Society of America, Washington, D.C., 1991), p. 268.

Hagler, M. O.

Johnson, K.

E. Maniloff, K. Johnson, Opt. Eng. 29, 225 (1990).
[CrossRef]

Krile, T. F.

LaMacchia, J. T.

Lee, S.

Y. Taketomi, J. Ford, H. Sasaki, J. Ma, Y. Fainman, S. Lee, J. Feinberg, in Digest of Meeting on Optical Computing (Optical Society of America, Washington, D.C., 1991), p. 268.

Lininger, D.

Ma, J.

Y. Taketomi, J. Ford, H. Sasaki, J. Ma, Y. Fainman, S. Lee, J. Feinberg, in Digest of Meeting on Optical Computing (Optical Society of America, Washington, D.C., 1991), p. 268.

Maniloff, E.

E. Maniloff, K. Johnson, Opt. Eng. 29, 225 (1990).
[CrossRef]

Paek, E.

E. Paek, J. Wullert, J. Patel, Jpn. J. Appl. Phys. 29, 1332 (1990).
[CrossRef]

Patel, J.

E. Paek, J. Wullert, J. Patel, Jpn. J. Appl. Phys. 29, 1332 (1990).
[CrossRef]

Pauliat, G.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, in Digest of Meeting on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1991), p. 122.

Psaltis, D.

Redus, W. D.

Roosen, G.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, in Digest of Meeting on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1991), p. 122.

Sasaki, H.

Y. Taketomi, J. Ford, H. Sasaki, J. Ma, Y. Fainman, S. Lee, J. Feinberg, in Digest of Meeting on Optical Computing (Optical Society of America, Washington, D.C., 1991), p. 268.

Taketomi, Y.

Y. Taketomi, J. Ford, H. Sasaki, J. Ma, Y. Fainman, S. Lee, J. Feinberg, in Digest of Meeting on Optical Computing (Optical Society of America, Washington, D.C., 1991), p. 268.

Tschudi, T.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, in Digest of Meeting on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1991), p. 122.

Wagner, K.

Walkup, J. F.

White, D. L.

Wullert, J.

E. Paek, J. Wullert, J. Patel, Jpn. J. Appl. Phys. 29, 1332 (1990).
[CrossRef]

Appl. Opt. (5)

Jpn. J. Appl. Phys. (1)

E. Paek, J. Wullert, J. Patel, Jpn. J. Appl. Phys. 29, 1332 (1990).
[CrossRef]

Opt. Eng. (1)

E. Maniloff, K. Johnson, Opt. Eng. 29, 225 (1990).
[CrossRef]

Other (2)

Y. Taketomi, J. Ford, H. Sasaki, J. Ma, Y. Fainman, S. Lee, J. Feinberg, in Digest of Meeting on Optical Computing (Optical Society of America, Washington, D.C., 1991), p. 268.

C. Denz, G. Pauliat, G. Roosen, T. Tschudi, in Digest of Meeting on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1991), p. 122.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Incremental evolution of the superimposed holograms. The diffraction efficiency of all the holograms increases as the cycle is repeated, gradually approaching the saturation value.

Fig. 2
Fig. 2

Index modulation Δn versus time, which shows that the slope of the foot of the exponential rise in the recording curve is much steeper than that of the erasure curve, even when the write and erase response times are identical.

Fig. 3
Fig. 3

Experimental setup for multiplex hologram storage. F-T, Fourier transform.

Fig. 4
Fig. 4

Reconstructed images and the raster scan results for signal uniformity control. The signal uniformity was improved from = 0.5 to = 0.1 by reducing the recording increment Δt from τ/15 to τ/63.

Fig. 5
Fig. 5

Reconstructed images, which indicate good resolution and low cross talk, with an average signal-to-noise ratio of 100:1.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ n w ( t ) = Δ n max [ 1 - exp ( - t / τ w ) ]             ( writing ) , Δ n e ( t ) = Δ n w ( t 0 ) exp [ - ( t - t 0 ) / τ e ]             ( erasing ) ,
d Δ n w d t | t sat = - ( N - 1 ) d Δ n e d t | t sat ,
N = 1 + τ e τ w ( Δ n max Δ n min - 1 ) .
Δ t = τ e 2 ( N - 1 ) ln ( 1 + ) .
[ 1 - exp ( - t i - 1 + Δ t τ w ) ] exp [ - ( N - 1 ) Δ t τ e ] = 1 - exp ( - t i τ w ) ,
C = - 2 ln ( 1 - σ ) ln ( 1 + ) ( N - 1 N - 1 + τ e / τ w ) .
T = - τ e ln ( 1 - σ ) 1 + ( τ e / τ w - 1 ) / N .

Metrics