Abstract

The effects of randomly varying birefringence on soliton interactions in optical fibers are studied. It is shown that for initial separations of less than 10 pulse widths, the phase-dependent short-range interaction dominates. For separations larger than 10 pulse widths, the soliton interacts through the dispersive radiation that they generate. This interaction is too weak to explain the phase-independent long-range soliton interaction observed experimentally.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Menyuk, Opt. Lett. 12, 614 (1987).
    [Crossref] [PubMed]
  2. C. R. Menyuk, J. Opt. Soc. Am. B 5, 392 (1988).
    [Crossref]
  3. P. K. A. Wai, C. R. Menyuk, H. H. Chen, Opt. Lett. 16, 1231 (1991).
    [Crossref] [PubMed]
  4. R. Arfken, Mathematical Methods for Physicists, 2nd ed. (Academic, London, 1970).
  5. S. V. Manakov, Zh. Eksp. Teor. Fiz. 65, 505 (1973) [Sov. Phys. JETP 38, 248 (1974)].
  6. J. P. Gordon, Opt. Lett. 8, 596 (1983).
    [Crossref] [PubMed]
  7. L. F. Mollenauer, K. Smith, Opt. Lett. 13, 675 (1988).
    [Crossref] [PubMed]
  8. K. Smith, L. F. Mollenauer, Opt. Lett. 14, 1284 (1989).
    [Crossref] [PubMed]
  9. E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. N. Starodumov, Sov. Lightwave Commun. 1, 37 (1991).

1991 (2)

P. K. A. Wai, C. R. Menyuk, H. H. Chen, Opt. Lett. 16, 1231 (1991).
[Crossref] [PubMed]

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. N. Starodumov, Sov. Lightwave Commun. 1, 37 (1991).

1989 (1)

1988 (2)

1987 (1)

1983 (1)

1973 (1)

S. V. Manakov, Zh. Eksp. Teor. Fiz. 65, 505 (1973) [Sov. Phys. JETP 38, 248 (1974)].

Arfken, R.

R. Arfken, Mathematical Methods for Physicists, 2nd ed. (Academic, London, 1970).

Chen, H. H.

Dianov, E. M.

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. N. Starodumov, Sov. Lightwave Commun. 1, 37 (1991).

Gordon, J. P.

Luchnikov, A. V.

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. N. Starodumov, Sov. Lightwave Commun. 1, 37 (1991).

Manakov, S. V.

S. V. Manakov, Zh. Eksp. Teor. Fiz. 65, 505 (1973) [Sov. Phys. JETP 38, 248 (1974)].

Menyuk, C. R.

Mollenauer, L. F.

Pilipetskii, A. N.

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. N. Starodumov, Sov. Lightwave Commun. 1, 37 (1991).

Smith, K.

Starodumov, A. N.

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. N. Starodumov, Sov. Lightwave Commun. 1, 37 (1991).

Wai, P. K. A.

J. Opt. Soc. Am. B (1)

Opt. Lett. (5)

Sov. Lightwave Commun. (1)

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. N. Starodumov, Sov. Lightwave Commun. 1, 37 (1991).

Zh. Eksp. Teor. Fiz. (1)

S. V. Manakov, Zh. Eksp. Teor. Fiz. 65, 505 (1973) [Sov. Phys. JETP 38, 248 (1974)].

Other (1)

R. Arfken, Mathematical Methods for Physicists, 2nd ed. (Academic, London, 1970).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Normalized power in the plane of polarization of the input pulse for a 1-soliton (circles) and a 2-soliton (crosses) as a function of the distance traveled. The birefringence axis rotates every z0/500; δ = 2.5.

Fig. 2
Fig. 2

Change in pulse separation for a pair of solitons as a function of the distance traveled for both constructive (circles) and destructive (crosses) interference. The solitons oscillate once and then separate in the former case and repel each other in the latter case.

Fig. 3
Fig. 3

Change in pulse separation (T = T0)/τ (crosses) as a function of distance traveled for δ = 5. The change in time delay of individual solitons is also plotted (circles and dotted curve).

Fig. 4
Fig. 4

Change in pulse separation (TT0)/τ as a function of the input separation T0 for a distance of 40 soliton periods.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Ψ = U Ψ ,
U = [ cos θ sin θ e i ϕ - sin θ e - i ϕ cos θ ]
i Ψ z + i δ σ Ψ t + 1 2 2 Ψ t 2 + 5 6 Ψ 2 Ψ + 1 6 ( Ψ σ Ψ ) σ Ψ = 0 ,
σ = [ cos 2 θ - sin 2 θ e i ϕ - sin 2 θ e - i ϕ - cos 2 θ ] .
i U z + 1 2 2 U t 2 + 8 9 ( U 2 + V 2 ) U = 0 , i V z + 1 2 2 V t 2 + 8 9 ( U 2 + V 2 ) V = 0.

Metrics