Abstract

We describe an all-solid-state, diode-pumped, eye-safe laser source at 1.61 μm, based on a Nd:YAG laser and a noncritically phase-matched KTP optical parametric oscillator. Total energy conversion efficiencies of the 1.064-μm pump to 1.61-μm signal and 3.1-μm idler approach 50%, with 35% conversion to 1.61 μm alone. This device produces 1.6 mJ at 1.61 μm with a wallplug efficiency of 1.1% and is readily scalable to higher energies. Tunability over 1.6 to 1.54 μm is obtained by rotation of the KTP crystal about its z axis, with 1.54-μm output obtained for propagation along the y axis under noncritical phase matching.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Stoneman, L. Esterowitz, in Digest of Conference on Advanced Solid State Lasers (Optical Society of America, Washington, D.C., 1990), paper WC5.
  2. Z. Chu, U. N. Singh, T. D. Wilkerson, Opt. Commun. 75, 173 (1990).
    [CrossRef]
  3. S. J. Brosnan, R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
    [CrossRef]
  4. R. L. Byer, in Quantum Electronics, H. Rabin, C. L. Tang, eds. (Academic, New York, 1975), Vol. I, p. 588.
  5. W. Hughes, A. D. Hays, D. DiBiase, J. Kasinski, R. L. Burnham, in Digest of Conference on Advanced Solid State Lasers (Optical Society of America, Washington, D.C., 1990), paper TuA1.
  6. J. Q. Yao, T. S. Fahlen, J. Appl. Phys. 55, 65 (1984).
    [CrossRef]
  7. L. R. Marshall, J. Kasinski, A. D. Hays, R. Burnham, Opt. Lett. 16, 681 (1991).
    [CrossRef] [PubMed]
  8. J. E. Bjorkholm, IEEE J. Quantum Electron. QE-7, 109 (1971).
    [CrossRef]

1991 (1)

1990 (1)

Z. Chu, U. N. Singh, T. D. Wilkerson, Opt. Commun. 75, 173 (1990).
[CrossRef]

1984 (1)

J. Q. Yao, T. S. Fahlen, J. Appl. Phys. 55, 65 (1984).
[CrossRef]

1979 (1)

S. J. Brosnan, R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
[CrossRef]

1971 (1)

J. E. Bjorkholm, IEEE J. Quantum Electron. QE-7, 109 (1971).
[CrossRef]

Bjorkholm, J. E.

J. E. Bjorkholm, IEEE J. Quantum Electron. QE-7, 109 (1971).
[CrossRef]

Brosnan, S. J.

S. J. Brosnan, R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
[CrossRef]

Burnham, R.

Burnham, R. L.

W. Hughes, A. D. Hays, D. DiBiase, J. Kasinski, R. L. Burnham, in Digest of Conference on Advanced Solid State Lasers (Optical Society of America, Washington, D.C., 1990), paper TuA1.

Byer, R. L.

S. J. Brosnan, R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
[CrossRef]

R. L. Byer, in Quantum Electronics, H. Rabin, C. L. Tang, eds. (Academic, New York, 1975), Vol. I, p. 588.

Chu, Z.

Z. Chu, U. N. Singh, T. D. Wilkerson, Opt. Commun. 75, 173 (1990).
[CrossRef]

DiBiase, D.

W. Hughes, A. D. Hays, D. DiBiase, J. Kasinski, R. L. Burnham, in Digest of Conference on Advanced Solid State Lasers (Optical Society of America, Washington, D.C., 1990), paper TuA1.

Esterowitz, L.

R. C. Stoneman, L. Esterowitz, in Digest of Conference on Advanced Solid State Lasers (Optical Society of America, Washington, D.C., 1990), paper WC5.

Fahlen, T. S.

J. Q. Yao, T. S. Fahlen, J. Appl. Phys. 55, 65 (1984).
[CrossRef]

Hays, A. D.

L. R. Marshall, J. Kasinski, A. D. Hays, R. Burnham, Opt. Lett. 16, 681 (1991).
[CrossRef] [PubMed]

W. Hughes, A. D. Hays, D. DiBiase, J. Kasinski, R. L. Burnham, in Digest of Conference on Advanced Solid State Lasers (Optical Society of America, Washington, D.C., 1990), paper TuA1.

Hughes, W.

W. Hughes, A. D. Hays, D. DiBiase, J. Kasinski, R. L. Burnham, in Digest of Conference on Advanced Solid State Lasers (Optical Society of America, Washington, D.C., 1990), paper TuA1.

Kasinski, J.

L. R. Marshall, J. Kasinski, A. D. Hays, R. Burnham, Opt. Lett. 16, 681 (1991).
[CrossRef] [PubMed]

W. Hughes, A. D. Hays, D. DiBiase, J. Kasinski, R. L. Burnham, in Digest of Conference on Advanced Solid State Lasers (Optical Society of America, Washington, D.C., 1990), paper TuA1.

Marshall, L. R.

Singh, U. N.

Z. Chu, U. N. Singh, T. D. Wilkerson, Opt. Commun. 75, 173 (1990).
[CrossRef]

Stoneman, R. C.

R. C. Stoneman, L. Esterowitz, in Digest of Conference on Advanced Solid State Lasers (Optical Society of America, Washington, D.C., 1990), paper WC5.

Wilkerson, T. D.

Z. Chu, U. N. Singh, T. D. Wilkerson, Opt. Commun. 75, 173 (1990).
[CrossRef]

Yao, J. Q.

J. Q. Yao, T. S. Fahlen, J. Appl. Phys. 55, 65 (1984).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. J. Brosnan, R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
[CrossRef]

J. E. Bjorkholm, IEEE J. Quantum Electron. QE-7, 109 (1971).
[CrossRef]

J. Appl. Phys. (1)

J. Q. Yao, T. S. Fahlen, J. Appl. Phys. 55, 65 (1984).
[CrossRef]

Opt. Commun. (1)

Z. Chu, U. N. Singh, T. D. Wilkerson, Opt. Commun. 75, 173 (1990).
[CrossRef]

Opt. Lett. (1)

Other (3)

R. C. Stoneman, L. Esterowitz, in Digest of Conference on Advanced Solid State Lasers (Optical Society of America, Washington, D.C., 1990), paper WC5.

R. L. Byer, in Quantum Electronics, H. Rabin, C. L. Tang, eds. (Academic, New York, 1975), Vol. I, p. 588.

W. Hughes, A. D. Hays, D. DiBiase, J. Kasinski, R. L. Burnham, in Digest of Conference on Advanced Solid State Lasers (Optical Society of America, Washington, D.C., 1990), paper TuA1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Calculated tuning curve for the KTP OPO showing the signal and idler wavelengths, deff, walk-off and acceptance angles, and normalized threshold intensity as a function of the angle θ to the z axis for ϕ = 0 (the angle to the x axis).

Fig. 2
Fig. 2

Eye-safe output energy at 1.61 μm versus pump energy for both confocal and plane-parallel7 OPO resonators.

Fig. 3
Fig. 3

Oscilloscope trace of total OPO output (1.61 and 3.1 μm) (dotted curve) and the input pump and depleted pump after each pass through the crystal.

Fig. 4
Fig. 4

Influence of cavity length on threshold for confocal and plane-parallel OPO resonators. The calculated effect due only to the change in the buildup time, and not other effects such as mode overlap, is shown as a solid curve.

Fig. 5
Fig. 5

Total OPO peak-power conversion efficiency from 1.064-μm pump to 1.61-μm signal and 3.1-μm idler for confocal and plane-parallel OPO cavities. The calculated dependence is shown as a solid line.

Metrics