Abstract

All-optical ultrafast and, or, and xor logic functions that use asymmetric nonlinear directional couplers are numerically demonstrated. In such an asymmetric coupler, different Kerr effects are generated when the same power is launched into two waveguides. The output power tends to appear in the waveguide of stronger Kerr effect when only one waveguide is excited. When both waveguides are excited, the output power contrast between the two waveguides depends on the relative phase of the two input signals. The parameters of fiber couplers are used to demonstrate the logic functions.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Thylen, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Maloney, Opt. Lett. 11, 739 (1986).
    [CrossRef] [PubMed]
  2. S. Wabnitz, E. M. Wright, C. T. Seaton, G. I. Stegeman, Appl. Phys. Lett. 49, 838 (1986).
    [CrossRef]
  3. Y. Silberberg, G. I. Stegeman, Appl. Phys. Lett. 50, 801 (1987).
    [CrossRef]
  4. N. Finlayson, E. M. Wright, C. T. Seaton, G. I. Stegeman, Y. Silberberg, Appl. Phys. Lett. 50, 1562 (1987).
    [CrossRef]
  5. S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, P. W. Smith, Appl. Phys. Lett. 51, 1135 (1987).
    [CrossRef]
  6. D. R. Heatley, E. M. Wright, J. Ehrlich, G. I. Stegeman, Opt. Lett. 13, 419 (1988).
    [CrossRef] [PubMed]
  7. S. Trillo, S. Wabnitz, E. M. Wright, G. I. Stegeman, Opt. Lett. 13, 672 (1988).
    [CrossRef] [PubMed]
  8. S. R. Friberg, A. M. Weiner, Y. Silberberg, B. G. Sfez, P. S. Smith, Opt. Lett. 13, 904 (1988).
    [CrossRef] [PubMed]
  9. A. M. Weiner, Y. Silberberg, H. Fouckhardt, D. E. Leaird, M. A. Saifi, M. J. Andrejco, P. W. Smith, IEEE J. Quantum Electron. 25, 2648 (1989).
    [CrossRef]
  10. S. Trillo, S. Wabnitz, Opt. Lett. 16, 1 (1991).
    [CrossRef] [PubMed]
  11. A. Hardy, W. Streifer, IEEE J. Lightwave Technol. LT-3, 1135 (1985).
    [CrossRef]
  12. S. L. Chuang, IEEE J. Lightwave Technol. LT-5, 174 (1987).
    [CrossRef]
  13. E. Shafir, A. Hardy, M. Tur, IEEE J. Lightwave Technol. 6, 58 (1988).
    [CrossRef]
  14. S. Trillo, S. Wabnitz, J. Opt. Soc. Am. B 5, 483 (1988).
    [CrossRef]
  15. Y. Chen, A. W. Snyder, IEEE J. Lightwave Technol. 8, 802 (1990).
    [CrossRef]

1991 (1)

1990 (1)

Y. Chen, A. W. Snyder, IEEE J. Lightwave Technol. 8, 802 (1990).
[CrossRef]

1989 (1)

A. M. Weiner, Y. Silberberg, H. Fouckhardt, D. E. Leaird, M. A. Saifi, M. J. Andrejco, P. W. Smith, IEEE J. Quantum Electron. 25, 2648 (1989).
[CrossRef]

1988 (5)

1987 (4)

S. L. Chuang, IEEE J. Lightwave Technol. LT-5, 174 (1987).
[CrossRef]

Y. Silberberg, G. I. Stegeman, Appl. Phys. Lett. 50, 801 (1987).
[CrossRef]

N. Finlayson, E. M. Wright, C. T. Seaton, G. I. Stegeman, Y. Silberberg, Appl. Phys. Lett. 50, 1562 (1987).
[CrossRef]

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, P. W. Smith, Appl. Phys. Lett. 51, 1135 (1987).
[CrossRef]

1986 (2)

S. Wabnitz, E. M. Wright, C. T. Seaton, G. I. Stegeman, Appl. Phys. Lett. 49, 838 (1986).
[CrossRef]

L. Thylen, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Maloney, Opt. Lett. 11, 739 (1986).
[CrossRef] [PubMed]

1985 (1)

A. Hardy, W. Streifer, IEEE J. Lightwave Technol. LT-3, 1135 (1985).
[CrossRef]

Andrejco, M. J.

A. M. Weiner, Y. Silberberg, H. Fouckhardt, D. E. Leaird, M. A. Saifi, M. J. Andrejco, P. W. Smith, IEEE J. Quantum Electron. 25, 2648 (1989).
[CrossRef]

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, P. W. Smith, Appl. Phys. Lett. 51, 1135 (1987).
[CrossRef]

Chen, Y.

Y. Chen, A. W. Snyder, IEEE J. Lightwave Technol. 8, 802 (1990).
[CrossRef]

Chuang, S. L.

S. L. Chuang, IEEE J. Lightwave Technol. LT-5, 174 (1987).
[CrossRef]

Ehrlich, J.

Finlayson, N.

N. Finlayson, E. M. Wright, C. T. Seaton, G. I. Stegeman, Y. Silberberg, Appl. Phys. Lett. 50, 1562 (1987).
[CrossRef]

Fouckhardt, H.

A. M. Weiner, Y. Silberberg, H. Fouckhardt, D. E. Leaird, M. A. Saifi, M. J. Andrejco, P. W. Smith, IEEE J. Quantum Electron. 25, 2648 (1989).
[CrossRef]

Friberg, S. R.

S. R. Friberg, A. M. Weiner, Y. Silberberg, B. G. Sfez, P. S. Smith, Opt. Lett. 13, 904 (1988).
[CrossRef] [PubMed]

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, P. W. Smith, Appl. Phys. Lett. 51, 1135 (1987).
[CrossRef]

Hardy, A.

E. Shafir, A. Hardy, M. Tur, IEEE J. Lightwave Technol. 6, 58 (1988).
[CrossRef]

A. Hardy, W. Streifer, IEEE J. Lightwave Technol. LT-3, 1135 (1985).
[CrossRef]

Heatley, D. R.

Leaird, D. E.

A. M. Weiner, Y. Silberberg, H. Fouckhardt, D. E. Leaird, M. A. Saifi, M. J. Andrejco, P. W. Smith, IEEE J. Quantum Electron. 25, 2648 (1989).
[CrossRef]

Maloney, J. V.

Oliver, M. K.

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, P. W. Smith, Appl. Phys. Lett. 51, 1135 (1987).
[CrossRef]

Saifi, M. A.

A. M. Weiner, Y. Silberberg, H. Fouckhardt, D. E. Leaird, M. A. Saifi, M. J. Andrejco, P. W. Smith, IEEE J. Quantum Electron. 25, 2648 (1989).
[CrossRef]

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, P. W. Smith, Appl. Phys. Lett. 51, 1135 (1987).
[CrossRef]

Seaton, C. T.

N. Finlayson, E. M. Wright, C. T. Seaton, G. I. Stegeman, Y. Silberberg, Appl. Phys. Lett. 50, 1562 (1987).
[CrossRef]

S. Wabnitz, E. M. Wright, C. T. Seaton, G. I. Stegeman, Appl. Phys. Lett. 49, 838 (1986).
[CrossRef]

L. Thylen, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Maloney, Opt. Lett. 11, 739 (1986).
[CrossRef] [PubMed]

Sfez, B. G.

Shafir, E.

E. Shafir, A. Hardy, M. Tur, IEEE J. Lightwave Technol. 6, 58 (1988).
[CrossRef]

Silberberg, Y.

A. M. Weiner, Y. Silberberg, H. Fouckhardt, D. E. Leaird, M. A. Saifi, M. J. Andrejco, P. W. Smith, IEEE J. Quantum Electron. 25, 2648 (1989).
[CrossRef]

S. R. Friberg, A. M. Weiner, Y. Silberberg, B. G. Sfez, P. S. Smith, Opt. Lett. 13, 904 (1988).
[CrossRef] [PubMed]

N. Finlayson, E. M. Wright, C. T. Seaton, G. I. Stegeman, Y. Silberberg, Appl. Phys. Lett. 50, 1562 (1987).
[CrossRef]

Y. Silberberg, G. I. Stegeman, Appl. Phys. Lett. 50, 801 (1987).
[CrossRef]

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, P. W. Smith, Appl. Phys. Lett. 51, 1135 (1987).
[CrossRef]

Smith, P. S.

Smith, P. W.

A. M. Weiner, Y. Silberberg, H. Fouckhardt, D. E. Leaird, M. A. Saifi, M. J. Andrejco, P. W. Smith, IEEE J. Quantum Electron. 25, 2648 (1989).
[CrossRef]

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, P. W. Smith, Appl. Phys. Lett. 51, 1135 (1987).
[CrossRef]

Snyder, A. W.

Y. Chen, A. W. Snyder, IEEE J. Lightwave Technol. 8, 802 (1990).
[CrossRef]

Stegeman, G. I.

S. Trillo, S. Wabnitz, E. M. Wright, G. I. Stegeman, Opt. Lett. 13, 672 (1988).
[CrossRef] [PubMed]

D. R. Heatley, E. M. Wright, J. Ehrlich, G. I. Stegeman, Opt. Lett. 13, 419 (1988).
[CrossRef] [PubMed]

N. Finlayson, E. M. Wright, C. T. Seaton, G. I. Stegeman, Y. Silberberg, Appl. Phys. Lett. 50, 1562 (1987).
[CrossRef]

Y. Silberberg, G. I. Stegeman, Appl. Phys. Lett. 50, 801 (1987).
[CrossRef]

S. Wabnitz, E. M. Wright, C. T. Seaton, G. I. Stegeman, Appl. Phys. Lett. 49, 838 (1986).
[CrossRef]

L. Thylen, E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Maloney, Opt. Lett. 11, 739 (1986).
[CrossRef] [PubMed]

Streifer, W.

A. Hardy, W. Streifer, IEEE J. Lightwave Technol. LT-3, 1135 (1985).
[CrossRef]

Thylen, L.

Trillo, S.

Tur, M.

E. Shafir, A. Hardy, M. Tur, IEEE J. Lightwave Technol. 6, 58 (1988).
[CrossRef]

Wabnitz, S.

Weiner, A. M.

A. M. Weiner, Y. Silberberg, H. Fouckhardt, D. E. Leaird, M. A. Saifi, M. J. Andrejco, P. W. Smith, IEEE J. Quantum Electron. 25, 2648 (1989).
[CrossRef]

S. R. Friberg, A. M. Weiner, Y. Silberberg, B. G. Sfez, P. S. Smith, Opt. Lett. 13, 904 (1988).
[CrossRef] [PubMed]

Wright, E. M.

Appl. Phys. Lett. (4)

S. Wabnitz, E. M. Wright, C. T. Seaton, G. I. Stegeman, Appl. Phys. Lett. 49, 838 (1986).
[CrossRef]

Y. Silberberg, G. I. Stegeman, Appl. Phys. Lett. 50, 801 (1987).
[CrossRef]

N. Finlayson, E. M. Wright, C. T. Seaton, G. I. Stegeman, Y. Silberberg, Appl. Phys. Lett. 50, 1562 (1987).
[CrossRef]

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, P. W. Smith, Appl. Phys. Lett. 51, 1135 (1987).
[CrossRef]

IEEE J. Lightwave Technol. (4)

A. Hardy, W. Streifer, IEEE J. Lightwave Technol. LT-3, 1135 (1985).
[CrossRef]

S. L. Chuang, IEEE J. Lightwave Technol. LT-5, 174 (1987).
[CrossRef]

E. Shafir, A. Hardy, M. Tur, IEEE J. Lightwave Technol. 6, 58 (1988).
[CrossRef]

Y. Chen, A. W. Snyder, IEEE J. Lightwave Technol. 8, 802 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. M. Weiner, Y. Silberberg, H. Fouckhardt, D. E. Leaird, M. A. Saifi, M. J. Andrejco, P. W. Smith, IEEE J. Quantum Electron. 25, 2648 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Normalized output soliton energy in channel 1 (circles and solid curve) and channel 2 (triangles and dashed curve) versus the ratio a2/a1 when q10 = 1 and q20 = 0. The normalized coupling length is 4.74.

Fig. 2
Fig. 2

Same as Fig. 1, except that q10 = 0 and q20 = 1.

Fig. 3
Fig. 3

Normalized output soliton energy in channel 1 (circles and solid curve) and channel 2 (triangles and dashed curve) versus the relative phase θ when q10 = q20 = 1 and a2/a1 = 1.8. The normalized coupling length is 4.74.

Tables (4)

Tables Icon

Table 1 and and or Gates with a2/a1 = 1.8, θ = 0.875 π, and Coupling Length of 4.74

Tables Icon

Table 2 and Gate with Gain and xor Gate with a2/a1 = 1.8, θ = 1.75 π, and Coupling Length of 4.74

Tables Icon

Table 3 and Gate with Gain and xor Gate with a2/a1 = 1.8, θ = 1.75 π, and Coupling Length of 3.56

Tables Icon

Table 4 and Gate with Gain and xor Gate with a2/a1 = 1.8, θ = 1.75 π, and Coupling Length of 4.15

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

j q 1 ζ + 1 2 2 q 1 η 2 + q 1 2 q 1 + κ q 2 = 0 ,
j q 2 ζ + 1 2 2 q 2 η 2 + a 2 a 1 q 2 2 q 2 + κ q 1 = 0 ,
a i = 0 Ψ i ( ρ ) 4 ρ d ρ / { 2 π [ 0 Ψ i ( ρ ) 2 ρ d ρ ] 2 } ,
q 1 ( 0 , η ) = q 10 sech ( η ) ,
q 2 ( 0 , η ) = q 20 sech ( η ) exp ( j θ ) .

Metrics