Abstract

We show experimentally the trapping of two spatial solitons of the same wavelength but with slightly different propagation directions, which results from the collision of two initially overlapped solitons beams. This is the spatial analog of soliton pulse trapping in birefringent optical fibers. Adjustment of the phase shift between each beam permits the switching of one soliton to the other without disturbing their trajectory.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
    [CrossRef]
  2. V E. Zakharov, A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).
  3. F. Reynaud, A. Barthelemy, Europhys. Lett. 12, 401 (1990);Proc. Soc. Photo-Opt. Instrum. Eng. 813, 1319 (1990);J. S. Aitchinson, A. M. Weiner, Y. Silberberg, D. E. Leaird, M. K. Oliver, J. L. Jackel, P. W. E. Smith, Opt. Lett. 16, 15 (1991).
    [CrossRef]
  4. Y. Kodama, A. Hasegawa, Opt. Lett. 16, 208 (1991).
    [CrossRef] [PubMed]
  5. M. N. Islam, Opt. Lett. 15, 417 (1990).
    [CrossRef] [PubMed]
  6. M. N. Islam, C. D. Poole, J. P. Gordon, Opt. Lett. 14, 1011 (1989).
    [CrossRef] [PubMed]
  7. A. Barthelemy, S. Maneuf, C. Froehly, Opt. Commun. 55, 201 (1985).
    [CrossRef]

1991

1990

M. N. Islam, Opt. Lett. 15, 417 (1990).
[CrossRef] [PubMed]

F. Reynaud, A. Barthelemy, Europhys. Lett. 12, 401 (1990);Proc. Soc. Photo-Opt. Instrum. Eng. 813, 1319 (1990);J. S. Aitchinson, A. M. Weiner, Y. Silberberg, D. E. Leaird, M. K. Oliver, J. L. Jackel, P. W. E. Smith, Opt. Lett. 16, 15 (1991).
[CrossRef]

1989

1985

A. Barthelemy, S. Maneuf, C. Froehly, Opt. Commun. 55, 201 (1985).
[CrossRef]

1973

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[CrossRef]

1972

V E. Zakharov, A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).

Barthelemy, A.

F. Reynaud, A. Barthelemy, Europhys. Lett. 12, 401 (1990);Proc. Soc. Photo-Opt. Instrum. Eng. 813, 1319 (1990);J. S. Aitchinson, A. M. Weiner, Y. Silberberg, D. E. Leaird, M. K. Oliver, J. L. Jackel, P. W. E. Smith, Opt. Lett. 16, 15 (1991).
[CrossRef]

A. Barthelemy, S. Maneuf, C. Froehly, Opt. Commun. 55, 201 (1985).
[CrossRef]

Froehly, C.

A. Barthelemy, S. Maneuf, C. Froehly, Opt. Commun. 55, 201 (1985).
[CrossRef]

Gordon, J. P.

Hasegawa, A.

Y. Kodama, A. Hasegawa, Opt. Lett. 16, 208 (1991).
[CrossRef] [PubMed]

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[CrossRef]

Islam, M. N.

Kodama, Y.

Maneuf, S.

A. Barthelemy, S. Maneuf, C. Froehly, Opt. Commun. 55, 201 (1985).
[CrossRef]

Poole, C. D.

Reynaud, F.

F. Reynaud, A. Barthelemy, Europhys. Lett. 12, 401 (1990);Proc. Soc. Photo-Opt. Instrum. Eng. 813, 1319 (1990);J. S. Aitchinson, A. M. Weiner, Y. Silberberg, D. E. Leaird, M. K. Oliver, J. L. Jackel, P. W. E. Smith, Opt. Lett. 16, 15 (1991).
[CrossRef]

Shabat, A. B.

V E. Zakharov, A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).

Tappert, F.

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[CrossRef]

Zakharov, V E.

V E. Zakharov, A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).

Appl. Phys. Lett.

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[CrossRef]

Europhys. Lett.

F. Reynaud, A. Barthelemy, Europhys. Lett. 12, 401 (1990);Proc. Soc. Photo-Opt. Instrum. Eng. 813, 1319 (1990);J. S. Aitchinson, A. M. Weiner, Y. Silberberg, D. E. Leaird, M. K. Oliver, J. L. Jackel, P. W. E. Smith, Opt. Lett. 16, 15 (1991).
[CrossRef]

Opt. Commun.

A. Barthelemy, S. Maneuf, C. Froehly, Opt. Commun. 55, 201 (1985).
[CrossRef]

Opt. Lett.

Sov. Phys. JETP

V E. Zakharov, A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Numerical simulation of the trapping of two initially overlapped spatial solitons of different directions (θ = 3 mrad). Output transverse profiles after 50-mm propagation length are shown for individual solitons (dotted and dashed curves) and for the simultaneous launching of both solitons with identical phase (solid curve). The other parameters are soliton width 60 μm, wavelength 532 nm, and nonlinear coefficient n2 = 3 × 10−14 cm2/W.

Fig. 2
Fig. 2

Same as in Fig. 1 except that the angle is θ = 1.8 mrad and the solitons are phase shifted by 2.3 rad.

Fig. 3
Fig. 3

Confirmation of spatial soliton trapping in Kerr liquid CS2. Recordings of the output intensity profiles for (a), (b) a single input soliton and (c) for their simultaneous propagation. The black vertical line corresponds to the origin where the beams are superimposed at the input.

Fig. 4
Fig. 4

Experimental demonstration of soliton switching. Output beam intensity shapes for single solitons are shown in (a) and (b) and for simultaneous launching with an initial phase shift of either positive (c) or negative sign (d). The scale is half of that of Fig. 3.

Metrics