Abstract

An optical lock-in detector has been proposed and demonstrated. This scheme utilizes the multiplicative and low-pass filtering characteristics of four-wave mixing in Bi12SiO20.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Meade, Lock-in Amplifiers: Principles and Applications (Peregrinus, London, 1983).
  2. A. B. Carlson, Communication Systems: An Introduction to Signals and Noise in Electrical Communication, 2nd ed. (McGraw-Hill, New York, 1975).
  3. E. Parshall, M. Cronin-Golomb, “Phase-conjugate interferometric analysis of thin films,” Appl. Opt. (to be published).
  4. M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
    [CrossRef]
  5. J. F. Lam, Appl. Phys. Lett. 42, 155 (1983).
    [CrossRef]
  6. D. Psaltis, J. Yu, J. Hong, Appl. Opt. 24, 3860 (1985).
    [CrossRef] [PubMed]
  7. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
    [CrossRef]
  8. T. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, Prog. Quantum Electron. 10, 77 (1985).
    [CrossRef]
  9. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
  10. G. C. Valley, Appl. Opt. 22, 3160 (1983).
    [CrossRef] [PubMed]

1985 (2)

D. Psaltis, J. Yu, J. Hong, Appl. Opt. 24, 3860 (1985).
[CrossRef] [PubMed]

T. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, Prog. Quantum Electron. 10, 77 (1985).
[CrossRef]

1984 (1)

M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

1983 (2)

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

1969 (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Carlson, A. B.

A. B. Carlson, Communication Systems: An Introduction to Signals and Noise in Electrical Communication, 2nd ed. (McGraw-Hill, New York, 1975).

Connors, L. M.

T. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, Prog. Quantum Electron. 10, 77 (1985).
[CrossRef]

Cronin-Golomb, M.

M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

E. Parshall, M. Cronin-Golomb, “Phase-conjugate interferometric analysis of thin films,” Appl. Opt. (to be published).

Fisher, B.

M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

Foote, P. D.

T. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, Prog. Quantum Electron. 10, 77 (1985).
[CrossRef]

Hall, T. J.

T. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, Prog. Quantum Electron. 10, 77 (1985).
[CrossRef]

Hong, J.

Jaura, R.

T. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, Prog. Quantum Electron. 10, 77 (1985).
[CrossRef]

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Lam, J. F.

J. F. Lam, Appl. Phys. Lett. 42, 155 (1983).
[CrossRef]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Meade, M. L.

M. L. Meade, Lock-in Amplifiers: Principles and Applications (Peregrinus, London, 1983).

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Parshall, E.

E. Parshall, M. Cronin-Golomb, “Phase-conjugate interferometric analysis of thin films,” Appl. Opt. (to be published).

Psaltis, D.

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Valley, G. C.

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

White, J. O.

M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

Yariv, A.

M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

Yu, J.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

J. F. Lam, Appl. Phys. Lett. 42, 155 (1983).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

Prog. Quantum Electron. (1)

T. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, Prog. Quantum Electron. 10, 77 (1985).
[CrossRef]

Other (3)

M. L. Meade, Lock-in Amplifiers: Principles and Applications (Peregrinus, London, 1983).

A. B. Carlson, Communication Systems: An Introduction to Signals and Noise in Electrical Communication, 2nd ed. (McGraw-Hill, New York, 1975).

E. Parshall, M. Cronin-Golomb, “Phase-conjugate interferometric analysis of thin films,” Appl. Opt. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental arrangement used for frequency mixing and optical lock-in detection.

Fig. 2
Fig. 2

Six oscilloscope traces displaying the results of sinusoidal phase modulation. The bottom trace of each pair shows the electronic results. A, Both inputs are modulated at 10.8 rad. B, The two inputs modulated simultaneously by 10.8 and 5.4 rad. C, Both of the inputs are modulated by 5.4 rad. The horizontal axis in all cases is 100 ms/division.

Fig. 3
Fig. 3

Theoretical prediction of the oscilloscope traces in Fig. 2.

Fig. 4
Fig. 4

Intensity of the phase-conjugate return as a function of the phase difference in the two electronic driving signals. The dots represent the experiment, and the solid curve represents the theory.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E sc t + E sc τ = G τ A 1 ( t ) A 4 * ( t ) I 0 ,
I 0 = | A 1 | 2 + | A 2 | 2 + | A 3 | 2 + | A 4 | 2 = const .
A 3 E sc .
A 1 = | A 1 | exp [ i δ 1 sin ( ω 1 t + ϕ 1 ) ] = | A 1 | J n ( δ 1 ) exp [ in ( ω 1 t + ϕ 1 ) ] ,
A 4 = | A 4 | exp [ i δ 2 sin ( ω 2 t + ϕ 2 ) ] = | A 4 | J n ( δ 2 ) exp [ in ( ω 2 t + ϕ 2 ) ] ,
E sc = G | A 1 | | A 4 | I 0 τ n = m = { J n ( δ 1 ) J m ( δ 2 ) i ( n ω 1 m ω 2 ) + 1 / τ × exp [ i ( n ω 1 m ω 2 ) t ] exp [ i ( n ϕ 1 m ϕ 2 ) ] } .
( n ω 1 m ω 2 ) τ 1 .
E sc = G | A 1 | | A 4 | I 0 τ n = { J n ( δ 1 ) J n ( δ 2 ) i n ( ω 1 ω 2 ) + 1 / τ × exp [ in ( ω 1 ω 2 ) t ] exp [ in ( ϕ 1 ϕ 2 ) ] } .
E sc = G | A 1 | | A 4 | I 0 n = J n ( δ 1 ) J n ( δ 2 ) exp [ in ( ϕ 1 ϕ 2 ) ] .

Metrics