Abstract

Potassium niobate is employed in an external resonator to generate single-frequency tunable radiation near 430 nm. For excitation with 1.35 W of power from a cw titanium–sapphire laser, 0.65 W of blue light is produced. A simple model has been developed to account for thermal lensing in the nonlinear crystal.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Bammert, J. Hoffnagle, P. Günter, Appl. Opt. 24, 1299 (1985).
    [CrossRef]
  2. T. Baer, M. S. Keirstead, D. F. Welch, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1989), paper ThM5.
  3. T. Baer, Spectra-Physics, Mountain View, Calif., (personal communication).
  4. G. J. Dixon, C. E. Tanner, C. E. Wieman, Opt. Lett. 14, 731 (1989).
    [CrossRef] [PubMed]
  5. A. Hemmerich, D. H. McIntyre, C. Zimmermann, T. W. Hänsch, Opt. Lett. 15, 372 (1990).
    [CrossRef] [PubMed]
  6. W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
    [CrossRef]
  7. M. K. Chun, L. Goldberg, I. N. Duling, T. F. Carruthers, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1990), paper CWE2.
  8. C. S. Adams, A. I. Ferguson, Opt. Commun. 79, 219 (1990).
    [CrossRef]
  9. Crystals fabricated by G. Mizelle, Virgo Optics, Port Richey, Fla.
  10. A. Ashkin, G. D. Boyd, T. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
    [CrossRef]
  11. W. J. Kozlovsky, C. D. Nabors, R. L. Byer, Opt. Lett. 12, 1014 (1987).
    [CrossRef] [PubMed]
  12. R. W. P. Drever, J. L. Hall, F. V. Kowalski, T. Hough, G. M. Ford, A. G. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).
  13. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, J. Appl. Phys. 36, 3 (1965).
    [CrossRef]
  14. In fact the harmonic heat source has a waist 2 smaller than the fundamental waist ω0, but we neglect this difference in our model.
  15. E. Tahnke, F. Emde, Tables of Functions (Teubner, Berlin, 1938).
  16. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989).

1990 (3)

A. Hemmerich, D. H. McIntyre, C. Zimmermann, T. W. Hänsch, Opt. Lett. 15, 372 (1990).
[CrossRef] [PubMed]

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

C. S. Adams, A. I. Ferguson, Opt. Commun. 79, 219 (1990).
[CrossRef]

1989 (1)

1987 (1)

1985 (1)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, T. Hough, G. M. Ford, A. G. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).

1966 (1)

A. Ashkin, G. D. Boyd, T. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

1965 (1)

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, J. Appl. Phys. 36, 3 (1965).
[CrossRef]

Adams, C. S.

C. S. Adams, A. I. Ferguson, Opt. Commun. 79, 219 (1990).
[CrossRef]

Ashkin, A.

A. Ashkin, G. D. Boyd, T. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

Baer, T.

T. Baer, M. S. Keirstead, D. F. Welch, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1989), paper ThM5.

T. Baer, Spectra-Physics, Mountain View, Calif., (personal communication).

Bammert, J. C.

Bona, G. L.

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

Boyd, G. D.

A. Ashkin, G. D. Boyd, T. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

Byer, R. L.

Carruthers, T. F.

M. K. Chun, L. Goldberg, I. N. Duling, T. F. Carruthers, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1990), paper CWE2.

Chun, M. K.

M. K. Chun, L. Goldberg, I. N. Duling, T. F. Carruthers, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1990), paper CWE2.

Dixon, G. J.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, T. Hough, G. M. Ford, A. G. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).

Duling, I. N.

M. K. Chun, L. Goldberg, I. N. Duling, T. F. Carruthers, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1990), paper CWE2.

Dziedzic, T. M.

A. Ashkin, G. D. Boyd, T. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

Emde, F.

E. Tahnke, F. Emde, Tables of Functions (Teubner, Berlin, 1938).

Ferguson, A. I.

C. S. Adams, A. I. Ferguson, Opt. Commun. 79, 219 (1990).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, T. Hough, G. M. Ford, A. G. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).

Goldberg, L.

M. K. Chun, L. Goldberg, I. N. Duling, T. F. Carruthers, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1990), paper CWE2.

Gordon, J. P.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, J. Appl. Phys. 36, 3 (1965).
[CrossRef]

Günter, P.

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, T. Hough, G. M. Ford, A. G. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).

Hänsch, T. W.

Hemmerich, A.

Hoffnagle, J.

Hough, T.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, T. Hough, G. M. Ford, A. G. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).

Keirstead, M. S.

T. Baer, M. S. Keirstead, D. F. Welch, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1989), paper ThM5.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, T. Hough, G. M. Ford, A. G. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).

Kozlovsky, W. J.

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, Opt. Lett. 12, 1014 (1987).
[CrossRef] [PubMed]

Latta, E. E.

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

Leite, R. C. C.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, J. Appl. Phys. 36, 3 (1965).
[CrossRef]

Lenth, W.

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

McIntyre, D. H.

Mizelle, G.

Crystals fabricated by G. Mizelle, Virgo Optics, Port Richey, Fla.

Moore, R. S.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, J. Appl. Phys. 36, 3 (1965).
[CrossRef]

Moser, A.

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

Munley, A. G.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, T. Hough, G. M. Ford, A. G. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).

Nabors, C. D.

Porto, S. P. S.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, J. Appl. Phys. 36, 3 (1965).
[CrossRef]

Tahnke, E.

E. Tahnke, F. Emde, Tables of Functions (Teubner, Berlin, 1938).

Tanner, C. E.

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, T. Hough, G. M. Ford, A. G. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).

Welch, D. F.

T. Baer, M. S. Keirstead, D. F. Welch, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1989), paper ThM5.

Whinnery, J. R.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, J. Appl. Phys. 36, 3 (1965).
[CrossRef]

Wieman, C. E.

Yariv, A.

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989).

Zimmermann, C.

Appl. Opt. (1)

Appl. Phys. (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, T. Hough, G. M. Ford, A. G. Munley, H. Ward, Appl. Phys. B 31, 97 (1983).

Appl. Phys. Lett. (1)

W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Ashkin, G. D. Boyd, T. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

J. Appl. Phys. (1)

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, J. Appl. Phys. 36, 3 (1965).
[CrossRef]

Opt. Commun. (1)

C. S. Adams, A. I. Ferguson, Opt. Commun. 79, 219 (1990).
[CrossRef]

Opt. Lett. (3)

Other (7)

Crystals fabricated by G. Mizelle, Virgo Optics, Port Richey, Fla.

In fact the harmonic heat source has a waist 2 smaller than the fundamental waist ω0, but we neglect this difference in our model.

E. Tahnke, F. Emde, Tables of Functions (Teubner, Berlin, 1938).

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989).

M. K. Chun, L. Goldberg, I. N. Duling, T. F. Carruthers, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1990), paper CWE2.

T. Baer, M. S. Keirstead, D. F. Welch, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1989), paper ThM5.

T. Baer, Spectra-Physics, Mountain View, Calif., (personal communication).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Diagram of the principal components, with C1 the cavity of the Ti:Al2O3 laser and C2 the external doubling cavity with the KNbO3 crystal. Elements of C1: BRF, birefringent filter; E's, étalons; OD, optical diode; T, laser crystal. Elements of C2: M1, input coupler; M2, piezoelectric-mounted mirror; L1, L2, lenses; K, KNbO3 crystal. Detector D1 is for λ1 (≃) 860 nm, while detector D2 is for λ2 (≃) 430 nm.

Fig. 2
Fig. 2

Second-harmonic output power P2 at 430 nm versus input fundamental power P1 at 860 nm. The solid curve is the theoretical prediction based on the independently measured single-pass conversion efficiency and intracavity losses. The experimental points labeled by the squares are for cw operation with the external buildup cavity actively locked to the infrared input. The circles are obtained in a swept mode of operation to avoid thermal effects, with P2 the peak power. In each case P2 is referenced to the power level just outside the crystal face. Propagation losses to detector D2 are (20 ± 5)%.

Fig. 3
Fig. 3

Fundamental waist size ω0 versus the spacing d between the lenses and the crystal surfaces to investigate the role of thermal lensing. Curves 1–5 are for increasing values of the axial temperature difference of ΔT(0) = 0, 0.6, 1.0, 1.4, and 1.6 K, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

= 4 T 1 E NL P 1 [ 2 1 T 1 ( 2 L E NL P 1 ) ] 2 ,
T 1 0 = L / 2 + L 2 / 4 + E NL P 1 .
Δ T ( r ) = Δ T ( 0 ) ( 1 α r 2 ) , α 2 ω 0 2 [ ln 2 γ a 2 ω 0 2 E i ( 2 a 2 ω 0 2 ) ] 1 ,
n ( r ) = n 0 + n b T Δ T ( r ) n 0 + 1 2 n 2 r 2 ,

Metrics