Abstract

A monobeam laser Doppler velocimeter that permits continuous recovery of the flow velocity profile along the beam is described. The scheme applies the coherence-multiplexing concept to backscattering Doppler detection. A theoretical analysis of the distributed velocimeter is given, along with a description of an experiment with a superluminescent diode source inserted in an all-fiber-optic scheme. The velocity profile of water flow in a duct is reported. The results confirm the exceptional capabilities offered by this velocimeter in experimental fluid mechanics.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yeh, H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
    [CrossRef]
  2. A significant review of current research on the LDV was presented at the Fifth International Symposium on Applications of Laser Technology to Fluid Mechanics, Lisbon, Portugal, July 9–12, 1990.
  3. L. E. Drain, The Laser Doppler Technique (Wiley, New York, 1980).
  4. A recent example is given by Y. Ikeda, N. Kurihara, T. Nakajima, R. Matsumoto, in Applications of Laser Anemometry to Fluid Mechanics, R. J. Adrian, T. Asanumu, D. F. G. Durao, F. Durst, J. H. Whitelaw, eds. (Springer-Verlag, Berlin, 1989), p. 361.
    [CrossRef]
  5. V. Gusmeroli, M. Martinelli, P. Vavassori, Opt. Lett. 14, 1330 (1989).
    [CrossRef] [PubMed]
  6. A. E. Siegman, Appl. Opt. 5, 1588 (1966).
    [CrossRef] [PubMed]
  7. S. Bopp, F. Durst, R. Muller, A. Nagwi, C. Tropea, H. Weber, in Applications of Laser Anemometry to Fluid Mechanics, R. J. Adrian, T. Asanumu, D. F. G. Durao, F. Durst, J. H. Whitelaw, eds. (Springer-Verlag, Berlin, 1989), p. 315.
    [CrossRef]
  8. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).

1989 (1)

1966 (1)

1964 (1)

Y. Yeh, H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
[CrossRef]

Bopp, S.

S. Bopp, F. Durst, R. Muller, A. Nagwi, C. Tropea, H. Weber, in Applications of Laser Anemometry to Fluid Mechanics, R. J. Adrian, T. Asanumu, D. F. G. Durao, F. Durst, J. H. Whitelaw, eds. (Springer-Verlag, Berlin, 1989), p. 315.
[CrossRef]

Cummins, H. Z.

Y. Yeh, H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
[CrossRef]

Drain, L. E.

L. E. Drain, The Laser Doppler Technique (Wiley, New York, 1980).

Durst, F.

S. Bopp, F. Durst, R. Muller, A. Nagwi, C. Tropea, H. Weber, in Applications of Laser Anemometry to Fluid Mechanics, R. J. Adrian, T. Asanumu, D. F. G. Durao, F. Durst, J. H. Whitelaw, eds. (Springer-Verlag, Berlin, 1989), p. 315.
[CrossRef]

Gusmeroli, V.

Ikeda, Y.

A recent example is given by Y. Ikeda, N. Kurihara, T. Nakajima, R. Matsumoto, in Applications of Laser Anemometry to Fluid Mechanics, R. J. Adrian, T. Asanumu, D. F. G. Durao, F. Durst, J. H. Whitelaw, eds. (Springer-Verlag, Berlin, 1989), p. 361.
[CrossRef]

Kurihara, N.

A recent example is given by Y. Ikeda, N. Kurihara, T. Nakajima, R. Matsumoto, in Applications of Laser Anemometry to Fluid Mechanics, R. J. Adrian, T. Asanumu, D. F. G. Durao, F. Durst, J. H. Whitelaw, eds. (Springer-Verlag, Berlin, 1989), p. 361.
[CrossRef]

Martinelli, M.

Matsumoto, R.

A recent example is given by Y. Ikeda, N. Kurihara, T. Nakajima, R. Matsumoto, in Applications of Laser Anemometry to Fluid Mechanics, R. J. Adrian, T. Asanumu, D. F. G. Durao, F. Durst, J. H. Whitelaw, eds. (Springer-Verlag, Berlin, 1989), p. 361.
[CrossRef]

Muller, R.

S. Bopp, F. Durst, R. Muller, A. Nagwi, C. Tropea, H. Weber, in Applications of Laser Anemometry to Fluid Mechanics, R. J. Adrian, T. Asanumu, D. F. G. Durao, F. Durst, J. H. Whitelaw, eds. (Springer-Verlag, Berlin, 1989), p. 315.
[CrossRef]

Nagwi, A.

S. Bopp, F. Durst, R. Muller, A. Nagwi, C. Tropea, H. Weber, in Applications of Laser Anemometry to Fluid Mechanics, R. J. Adrian, T. Asanumu, D. F. G. Durao, F. Durst, J. H. Whitelaw, eds. (Springer-Verlag, Berlin, 1989), p. 315.
[CrossRef]

Nakajima, T.

A recent example is given by Y. Ikeda, N. Kurihara, T. Nakajima, R. Matsumoto, in Applications of Laser Anemometry to Fluid Mechanics, R. J. Adrian, T. Asanumu, D. F. G. Durao, F. Durst, J. H. Whitelaw, eds. (Springer-Verlag, Berlin, 1989), p. 361.
[CrossRef]

Siegman, A. E.

Tropea, C.

S. Bopp, F. Durst, R. Muller, A. Nagwi, C. Tropea, H. Weber, in Applications of Laser Anemometry to Fluid Mechanics, R. J. Adrian, T. Asanumu, D. F. G. Durao, F. Durst, J. H. Whitelaw, eds. (Springer-Verlag, Berlin, 1989), p. 315.
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).

Vavassori, P.

Weber, H.

S. Bopp, F. Durst, R. Muller, A. Nagwi, C. Tropea, H. Weber, in Applications of Laser Anemometry to Fluid Mechanics, R. J. Adrian, T. Asanumu, D. F. G. Durao, F. Durst, J. H. Whitelaw, eds. (Springer-Verlag, Berlin, 1989), p. 315.
[CrossRef]

Yeh, Y.

Y. Yeh, H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Yeh, H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
[CrossRef]

Opt. Lett. (1)

Other (5)

S. Bopp, F. Durst, R. Muller, A. Nagwi, C. Tropea, H. Weber, in Applications of Laser Anemometry to Fluid Mechanics, R. J. Adrian, T. Asanumu, D. F. G. Durao, F. Durst, J. H. Whitelaw, eds. (Springer-Verlag, Berlin, 1989), p. 315.
[CrossRef]

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).

A significant review of current research on the LDV was presented at the Fifth International Symposium on Applications of Laser Technology to Fluid Mechanics, Lisbon, Portugal, July 9–12, 1990.

L. E. Drain, The Laser Doppler Technique (Wiley, New York, 1980).

A recent example is given by Y. Ikeda, N. Kurihara, T. Nakajima, R. Matsumoto, in Applications of Laser Anemometry to Fluid Mechanics, R. J. Adrian, T. Asanumu, D. F. G. Durao, F. Durst, J. H. Whitelaw, eds. (Springer-Verlag, Berlin, 1989), p. 361.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Classical localized LDV (after Ref. 1). (b) Principal design of a DLDV based on a low-coherence source. Different flow volumes are interrogated by moving the reference mirror.

Fig. 2
Fig. 2

Schematic of the DLDV The fiber-optic probe launches a collimated beam in the flow under investigation. The scattering volume is interrogated by compensating, through the RCC, the optical paths of the all-fiber interferometer. SLD, superluminescent laser diode; PD's photodiodes; G1, G2, collimating lenses; HWP, half-wave plate; QWP, quarter-wave plate.

Fig. 3
Fig. 3

Power spectra of the recovered Doppler signals at different flow rates. The inset shows a typical Doppler burst.

Fig. 4
Fig. 4

Flow velocity profile detected by scanning the RCC.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P s LDV < N σ λ P L / 4 ,
P s DLDV < N σ b Ω l c P D .
( S / N ) DLDV / ( S / N ) LDV = ( 4 Ω l c / λ ) ( σ b / σ ) ( P D / P L ) .

Metrics