Abstract

High-resolution interferometric spectra of the stimulated Raman scattering (SRS) spectra from flowing ethanol droplets are presented. The linewidths of the SRS peaks are less than 0.005 cm−1, and the equal frequency spacings of the SRS peaks are an order of magnitude smaller than the spacings for morphology-dependent resonances of a perfect sphere. The observed results from droplets that are deformed by inertial effects are consistent with T-matrix and perturbation predictions of frequency splitting into the various azimuthal modes of a (2n + 1)-degenerate morphology-dependent resonance with angular momentum n in a perfect sphere.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Hill, R. E. Benner, in Optical Effects Associated with Small Particles,P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), p. 3.
  2. S. C. Ching, H. M. Lai, K. Young, J. Opt. Soc. Am. B 4, 2004 (1987).
    [CrossRef]
  3. H.-M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, Opt. Lett. 9, 499 (1984);H.-B. Lin, A. L. Huston, B. J. Justus, A. J. Campillo, Opt. Lett. 11, 614 (1986).
    [CrossRef] [PubMed]
  4. J. B. Snow, S.-X. Qian, R. K. Chang, Opt. Lett. 10, 37 (1985);A. Biswas, H. Latifi, R. L. Armstrong, R. G. Pinnick, Phys. Rev. A 40, 7413 (1989);H.-B. Lin, A. L. Huston, J. D. Eversole, A. J. Campillo, J. Opt. Soc. Am. B 7, 2079 (1990).
    [CrossRef] [PubMed]
  5. J.-Z. Zhang, R. K. Chang, J. Opt. Soc. Am. B 6, 151 (1989);J.-Z. Zhang, G. Chen, R. K. Chang, J. Opt. Soc. Am. B 7, 108 (1990).
    [CrossRef]
  6. P. W. Barber, S. C. Hill, in Optical Particle Sizing: Theory and Practice, G. Gouesbet, G. Grehan, eds. (Plenum, New York, 1988), p. 43.
  7. H. M. Lai, P. T. Leung, K. Young, P. W. Barber, S. C. Hill, Phys. Rev. A 41, 5187 (1990).
    [CrossRef] [PubMed]
  8. H.-M. Tzeng, M. B. Long, R. K. Chang, P. W. Barber, Opt. Lett. 10, 209 (1985).
    [CrossRef] [PubMed]
  9. S. Arnold, D. E. Spock, L. M. Folan, Opt. Lett. 15, 1111 (1990).
    [CrossRef] [PubMed]
  10. G. Scheweiger, Opt. Lett. 15, 156 (1990).
    [CrossRef]
  11. T. D. Taylor, A. Acrivos, J. Fluid Mech. 18, 466 (1964).
    [CrossRef]
  12. G. Chen, W P. Acker, R. K. Chang, S. C. Hill, Opt. Lett. 16, 117 (1991).
    [CrossRef] [PubMed]

1991 (1)

1990 (3)

1989 (1)

1987 (1)

1985 (2)

1984 (1)

1964 (1)

T. D. Taylor, A. Acrivos, J. Fluid Mech. 18, 466 (1964).
[CrossRef]

Acker, W P.

Acrivos, A.

T. D. Taylor, A. Acrivos, J. Fluid Mech. 18, 466 (1964).
[CrossRef]

Arnold, S.

Barber, P. W.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, S. C. Hill, Phys. Rev. A 41, 5187 (1990).
[CrossRef] [PubMed]

H.-M. Tzeng, M. B. Long, R. K. Chang, P. W. Barber, Opt. Lett. 10, 209 (1985).
[CrossRef] [PubMed]

P. W. Barber, S. C. Hill, in Optical Particle Sizing: Theory and Practice, G. Gouesbet, G. Grehan, eds. (Plenum, New York, 1988), p. 43.

Benner, R. E.

S. C. Hill, R. E. Benner, in Optical Effects Associated with Small Particles,P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), p. 3.

Chang, R. K.

Chen, G.

Ching, S. C.

Folan, L. M.

Hill, S. C.

G. Chen, W P. Acker, R. K. Chang, S. C. Hill, Opt. Lett. 16, 117 (1991).
[CrossRef] [PubMed]

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, S. C. Hill, Phys. Rev. A 41, 5187 (1990).
[CrossRef] [PubMed]

S. C. Hill, R. E. Benner, in Optical Effects Associated with Small Particles,P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), p. 3.

P. W. Barber, S. C. Hill, in Optical Particle Sizing: Theory and Practice, G. Gouesbet, G. Grehan, eds. (Plenum, New York, 1988), p. 43.

Lai, H. M.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, S. C. Hill, Phys. Rev. A 41, 5187 (1990).
[CrossRef] [PubMed]

S. C. Ching, H. M. Lai, K. Young, J. Opt. Soc. Am. B 4, 2004 (1987).
[CrossRef]

Leung, P. T.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, S. C. Hill, Phys. Rev. A 41, 5187 (1990).
[CrossRef] [PubMed]

Long, M. B.

Qian, S.-X.

Scheweiger, G.

Snow, J. B.

Spock, D. E.

Taylor, T. D.

T. D. Taylor, A. Acrivos, J. Fluid Mech. 18, 466 (1964).
[CrossRef]

Tzeng, H.-M.

Wall, K. F.

Young, K.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, S. C. Hill, Phys. Rev. A 41, 5187 (1990).
[CrossRef] [PubMed]

S. C. Ching, H. M. Lai, K. Young, J. Opt. Soc. Am. B 4, 2004 (1987).
[CrossRef]

Zhang, J.-Z.

J. Fluid Mech. (1)

T. D. Taylor, A. Acrivos, J. Fluid Mech. 18, 466 (1964).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (6)

Phys. Rev. A (1)

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, S. C. Hill, Phys. Rev. A 41, 5187 (1990).
[CrossRef] [PubMed]

Other (2)

S. C. Hill, R. E. Benner, in Optical Effects Associated with Small Particles,P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), p. 3.

P. W. Barber, S. C. Hill, in Optical Particle Sizing: Theory and Practice, G. Gouesbet, G. Grehan, eds. (Plenum, New York, 1988), p. 43.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of a spheroid droplet that is axisymmetric along the flow direction (z axis) and irradiated by the input beam along the x axis. SRS is collected along the ±y axes. The maximum of the internal pump intensity distribution is shown as a shaded spot. The MDR's with different azimuthal numbers m are oriented at different θ's relative to the z axis.

Fig. 2
Fig. 2

(a) High-resolution SRS spectrum measured with an interferometer having a FSR of 0.2 cm−1 and at I(ωL) = 0.007 GW/cm2. (b) SRS spectrum measured with an interferometer having a FSR of 0.5 cm−1 and at I(ωL) = 0.01 GW/cm2. For both spectra, the SRS is collected from one side of the droplet, and the photodiode array simultaneously detects four Fabry–Perot interferometer orders.

Fig. 3
Fig. 3

(a) Internal intensity distribution as a function of θ for n = 468 MDR's with m = 1, 200, and 468. (b) The internal intensity distribution near θ = 90° (note the expanded θ scale) of I(ωL) and the n = 468 MDR's with m = n, n − 1, and n − 2. The size parameter for the sphere is x = 448.8.

Metrics