Abstract

We report generation of tunable VUV radiation in the range 117–150 nm by four-wave difference-frequency mixing of a tunable ArF excimer laser with an Nd:YAG-pumped dye laser. The four-wave mixing occurs through two-photon resonant enhancement of χ(3) through the E,F1g+(E,υ=2,J=03) state(s) of H2 or the 4p 56p(3/2)2 state of Kr in the process (2ω193ωdye = ωVUV). An estimate of energy efficiency yields 3 × 10−5 near 133 nm for both H2 and Kr. Even though several rotational resonances fall within the natural 193-nm bandwidth, mixing with broadband ArF output in H2 yields single-line VUV output with a FWHM of 3.5 cm−1 at half the efficiency compared with that of line-narrowed operation.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Smith, W. J. Alford, G. R. Hadley, J. Opt. Soc. Am. B 5, 1503 (1988); K. D. Bonin, T. J. Mcllrath, J. Opt. Soc. Am. B 2, 527 (1985).
    [CrossRef]
  2. R. Hilbig, R. Wallenstein, IEEE J. Quantum Electron. QE-19, 194 (1983).
    [CrossRef]
  3. G. Hibler, A. Lago, R. J. Wallenstein, J. Opt. Soc. Am. B 4, 1753 (1987).
    [CrossRef]
  4. W. K. Bischel, J. Bokor, D. J. Kligler, C. K. Rhodes, IEEE J. Quantum Electron. QE-15, 380 (1979).
    [CrossRef]
  5. G. C. Bjorklund, IEEE J. Quantum Electron. QE-11, 287 (1975).
    [CrossRef]
  6. J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, New York, 1984).
  7. G. Herzbeg, Spectra of Diatomic Molecules (Van Nostrand Reinhold, New York, 1950); H. Rottke, K. H. Welge, Chem. Phys. Lett. 99, 456 (1983).
    [CrossRef]
  8. J. C. Miller, Phys. Rev. A 40, 6969 (1989), and references therein.
    [CrossRef] [PubMed]
  9. P. L. Smith, M. C. E. Huber, W. H. Parkinson, Phys. Rev. A 13, 1422 (1976).
    [CrossRef]
  10. J.-C. Nieh, J. J. Valentini, J. Chem. Phys. 92, 1083 (1990); B. P. Gerrity, J. J. Valentini, J. Chem. Phys. 83, 2207 (1985); D. A. V. Kliner, D. E. Adelman, R. N. Zare, J. Chem. Phys. 94, 1069 (1991), and references therein.
    [CrossRef]

1990 (1)

J.-C. Nieh, J. J. Valentini, J. Chem. Phys. 92, 1083 (1990); B. P. Gerrity, J. J. Valentini, J. Chem. Phys. 83, 2207 (1985); D. A. V. Kliner, D. E. Adelman, R. N. Zare, J. Chem. Phys. 94, 1069 (1991), and references therein.
[CrossRef]

1989 (1)

J. C. Miller, Phys. Rev. A 40, 6969 (1989), and references therein.
[CrossRef] [PubMed]

1988 (1)

1987 (1)

1983 (1)

R. Hilbig, R. Wallenstein, IEEE J. Quantum Electron. QE-19, 194 (1983).
[CrossRef]

1979 (1)

W. K. Bischel, J. Bokor, D. J. Kligler, C. K. Rhodes, IEEE J. Quantum Electron. QE-15, 380 (1979).
[CrossRef]

1976 (1)

P. L. Smith, M. C. E. Huber, W. H. Parkinson, Phys. Rev. A 13, 1422 (1976).
[CrossRef]

1975 (1)

G. C. Bjorklund, IEEE J. Quantum Electron. QE-11, 287 (1975).
[CrossRef]

Alford, W. J.

Bischel, W. K.

W. K. Bischel, J. Bokor, D. J. Kligler, C. K. Rhodes, IEEE J. Quantum Electron. QE-15, 380 (1979).
[CrossRef]

Bjorklund, G. C.

G. C. Bjorklund, IEEE J. Quantum Electron. QE-11, 287 (1975).
[CrossRef]

Bokor, J.

W. K. Bischel, J. Bokor, D. J. Kligler, C. K. Rhodes, IEEE J. Quantum Electron. QE-15, 380 (1979).
[CrossRef]

Hadley, G. R.

Herzbeg, G.

G. Herzbeg, Spectra of Diatomic Molecules (Van Nostrand Reinhold, New York, 1950); H. Rottke, K. H. Welge, Chem. Phys. Lett. 99, 456 (1983).
[CrossRef]

Hibler, G.

Hilbig, R.

R. Hilbig, R. Wallenstein, IEEE J. Quantum Electron. QE-19, 194 (1983).
[CrossRef]

Huber, M. C. E.

P. L. Smith, M. C. E. Huber, W. H. Parkinson, Phys. Rev. A 13, 1422 (1976).
[CrossRef]

Kligler, D. J.

W. K. Bischel, J. Bokor, D. J. Kligler, C. K. Rhodes, IEEE J. Quantum Electron. QE-15, 380 (1979).
[CrossRef]

Lago, A.

Miller, J. C.

J. C. Miller, Phys. Rev. A 40, 6969 (1989), and references therein.
[CrossRef] [PubMed]

Nieh, J.-C.

J.-C. Nieh, J. J. Valentini, J. Chem. Phys. 92, 1083 (1990); B. P. Gerrity, J. J. Valentini, J. Chem. Phys. 83, 2207 (1985); D. A. V. Kliner, D. E. Adelman, R. N. Zare, J. Chem. Phys. 94, 1069 (1991), and references therein.
[CrossRef]

Parkinson, W. H.

P. L. Smith, M. C. E. Huber, W. H. Parkinson, Phys. Rev. A 13, 1422 (1976).
[CrossRef]

Reintjes, J. F.

J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, New York, 1984).

Rhodes, C. K.

W. K. Bischel, J. Bokor, D. J. Kligler, C. K. Rhodes, IEEE J. Quantum Electron. QE-15, 380 (1979).
[CrossRef]

Smith, A. V.

Smith, P. L.

P. L. Smith, M. C. E. Huber, W. H. Parkinson, Phys. Rev. A 13, 1422 (1976).
[CrossRef]

Valentini, J. J.

J.-C. Nieh, J. J. Valentini, J. Chem. Phys. 92, 1083 (1990); B. P. Gerrity, J. J. Valentini, J. Chem. Phys. 83, 2207 (1985); D. A. V. Kliner, D. E. Adelman, R. N. Zare, J. Chem. Phys. 94, 1069 (1991), and references therein.
[CrossRef]

Wallenstein, R.

R. Hilbig, R. Wallenstein, IEEE J. Quantum Electron. QE-19, 194 (1983).
[CrossRef]

Wallenstein, R. J.

IEEE J. Quantum Electron. (3)

W. K. Bischel, J. Bokor, D. J. Kligler, C. K. Rhodes, IEEE J. Quantum Electron. QE-15, 380 (1979).
[CrossRef]

G. C. Bjorklund, IEEE J. Quantum Electron. QE-11, 287 (1975).
[CrossRef]

R. Hilbig, R. Wallenstein, IEEE J. Quantum Electron. QE-19, 194 (1983).
[CrossRef]

J. Chem. Phys. (1)

J.-C. Nieh, J. J. Valentini, J. Chem. Phys. 92, 1083 (1990); B. P. Gerrity, J. J. Valentini, J. Chem. Phys. 83, 2207 (1985); D. A. V. Kliner, D. E. Adelman, R. N. Zare, J. Chem. Phys. 94, 1069 (1991), and references therein.
[CrossRef]

J. Opt. Soc. Am. B (2)

Phys. Rev. A (2)

J. C. Miller, Phys. Rev. A 40, 6969 (1989), and references therein.
[CrossRef] [PubMed]

P. L. Smith, M. C. E. Huber, W. H. Parkinson, Phys. Rev. A 13, 1422 (1976).
[CrossRef]

Other (2)

J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, New York, 1984).

G. Herzbeg, Spectra of Diatomic Molecules (Van Nostrand Reinhold, New York, 1950); H. Rottke, K. H. Welge, Chem. Phys. Lett. 99, 456 (1983).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Normalized VUV generation at ~133 nm as a function of cell pressure for Kr and H2 with narrow-band ArF laser operation.

Fig. 2
Fig. 2

Effects of tuning the ArF laser. Top curve: ArF laser power with labeled O2 (4–0) band absorptions. Middle curve: VUV generation near 133 nm in 300 Torr of H2 (note H2 resonances and baseline). Bottom curve: H2 fluorescence (EB, ~750 nm).

Fig. 3
Fig. 3

VUV transmission spectrum through Kr cold gas cell. The VUV radiation is from 300 Torr of H2 using broadband ArF output.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P VUV = A ( ω VUV , ω 193 , ω dye , ρ ) × | x ( 3 ) ( ω VUV , ω 193 , ω 193 , ω dye ) | 2 P 2 193 P dye × exp ( b | Δ k | ) ,

Metrics