Abstract

Frequency selectivity of a novel type of multielement, multisection laterally coupled semiconductor laser array is studied using the round-trip method. It is found that such a structure should lead to a strong frequency selectivity owing to a periodic dependency of the threshold gain on the frequency. A gain-guided two-coupled-cavity device was fabricated. The experimental results show excellent agreement with the theoretical prediction.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Lang, A. Yariv, J. Salzman, IEEE J. Quantum Electron. QE-23, 395 (1987).
    [CrossRef]
  2. E. Kapon, J. Katz, S. Margalit, A. Yariv, Appl. Phys. Lett. 44, 157 (1984).
    [CrossRef]
  3. Y. Suematsu, M. Yamada, K. Hayashi, IEEE J. Quantum Electron. QE-11, 457 (1975).
    [CrossRef]
  4. S. Mukai, E. Kapon, J. Katz, C. Lindsey, Z. Rav-Noy, S. Margalit, A. Yariv, Appl. Phys. Lett. 44, 478 (1984).
    [CrossRef]
  5. J. Katz, E. Kapon, C. Lindsey, S. Margalit, A. Yariv, Appl. Opt. 23, 2231 (1984).
    [CrossRef] [PubMed]

1987 (1)

R. J. Lang, A. Yariv, J. Salzman, IEEE J. Quantum Electron. QE-23, 395 (1987).
[CrossRef]

1984 (3)

E. Kapon, J. Katz, S. Margalit, A. Yariv, Appl. Phys. Lett. 44, 157 (1984).
[CrossRef]

S. Mukai, E. Kapon, J. Katz, C. Lindsey, Z. Rav-Noy, S. Margalit, A. Yariv, Appl. Phys. Lett. 44, 478 (1984).
[CrossRef]

J. Katz, E. Kapon, C. Lindsey, S. Margalit, A. Yariv, Appl. Opt. 23, 2231 (1984).
[CrossRef] [PubMed]

1975 (1)

Y. Suematsu, M. Yamada, K. Hayashi, IEEE J. Quantum Electron. QE-11, 457 (1975).
[CrossRef]

Hayashi, K.

Y. Suematsu, M. Yamada, K. Hayashi, IEEE J. Quantum Electron. QE-11, 457 (1975).
[CrossRef]

Kapon, E.

S. Mukai, E. Kapon, J. Katz, C. Lindsey, Z. Rav-Noy, S. Margalit, A. Yariv, Appl. Phys. Lett. 44, 478 (1984).
[CrossRef]

E. Kapon, J. Katz, S. Margalit, A. Yariv, Appl. Phys. Lett. 44, 157 (1984).
[CrossRef]

J. Katz, E. Kapon, C. Lindsey, S. Margalit, A. Yariv, Appl. Opt. 23, 2231 (1984).
[CrossRef] [PubMed]

Katz, J.

J. Katz, E. Kapon, C. Lindsey, S. Margalit, A. Yariv, Appl. Opt. 23, 2231 (1984).
[CrossRef] [PubMed]

E. Kapon, J. Katz, S. Margalit, A. Yariv, Appl. Phys. Lett. 44, 157 (1984).
[CrossRef]

S. Mukai, E. Kapon, J. Katz, C. Lindsey, Z. Rav-Noy, S. Margalit, A. Yariv, Appl. Phys. Lett. 44, 478 (1984).
[CrossRef]

Lang, R. J.

R. J. Lang, A. Yariv, J. Salzman, IEEE J. Quantum Electron. QE-23, 395 (1987).
[CrossRef]

Lindsey, C.

S. Mukai, E. Kapon, J. Katz, C. Lindsey, Z. Rav-Noy, S. Margalit, A. Yariv, Appl. Phys. Lett. 44, 478 (1984).
[CrossRef]

J. Katz, E. Kapon, C. Lindsey, S. Margalit, A. Yariv, Appl. Opt. 23, 2231 (1984).
[CrossRef] [PubMed]

Margalit, S.

J. Katz, E. Kapon, C. Lindsey, S. Margalit, A. Yariv, Appl. Opt. 23, 2231 (1984).
[CrossRef] [PubMed]

S. Mukai, E. Kapon, J. Katz, C. Lindsey, Z. Rav-Noy, S. Margalit, A. Yariv, Appl. Phys. Lett. 44, 478 (1984).
[CrossRef]

E. Kapon, J. Katz, S. Margalit, A. Yariv, Appl. Phys. Lett. 44, 157 (1984).
[CrossRef]

Mukai, S.

S. Mukai, E. Kapon, J. Katz, C. Lindsey, Z. Rav-Noy, S. Margalit, A. Yariv, Appl. Phys. Lett. 44, 478 (1984).
[CrossRef]

Rav-Noy, Z.

S. Mukai, E. Kapon, J. Katz, C. Lindsey, Z. Rav-Noy, S. Margalit, A. Yariv, Appl. Phys. Lett. 44, 478 (1984).
[CrossRef]

Salzman, J.

R. J. Lang, A. Yariv, J. Salzman, IEEE J. Quantum Electron. QE-23, 395 (1987).
[CrossRef]

Suematsu, Y.

Y. Suematsu, M. Yamada, K. Hayashi, IEEE J. Quantum Electron. QE-11, 457 (1975).
[CrossRef]

Yamada, M.

Y. Suematsu, M. Yamada, K. Hayashi, IEEE J. Quantum Electron. QE-11, 457 (1975).
[CrossRef]

Yariv, A.

R. J. Lang, A. Yariv, J. Salzman, IEEE J. Quantum Electron. QE-23, 395 (1987).
[CrossRef]

E. Kapon, J. Katz, S. Margalit, A. Yariv, Appl. Phys. Lett. 44, 157 (1984).
[CrossRef]

S. Mukai, E. Kapon, J. Katz, C. Lindsey, Z. Rav-Noy, S. Margalit, A. Yariv, Appl. Phys. Lett. 44, 478 (1984).
[CrossRef]

J. Katz, E. Kapon, C. Lindsey, S. Margalit, A. Yariv, Appl. Opt. 23, 2231 (1984).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

E. Kapon, J. Katz, S. Margalit, A. Yariv, Appl. Phys. Lett. 44, 157 (1984).
[CrossRef]

S. Mukai, E. Kapon, J. Katz, C. Lindsey, Z. Rav-Noy, S. Margalit, A. Yariv, Appl. Phys. Lett. 44, 478 (1984).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. J. Lang, A. Yariv, J. Salzman, IEEE J. Quantum Electron. QE-23, 395 (1987).
[CrossRef]

Y. Suematsu, M. Yamada, K. Hayashi, IEEE J. Quantum Electron. QE-11, 457 (1975).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the laterally coupled two-channel [(a) and (b)] structure with different reflectivities at each channel facet.

Fig. 2
Fig. 2

Schematic of the proposed device. Each channel has two longitudinal electrodes, a gain (long) electrode and a phase/absorption (short) electrode.

Fig. 3
Fig. 3

Calculated coupling coefficient k for the case of gain-guided coupled-cavity channels with identical gain in the two channels.

Fig. 4
Fig. 4

Threshold gain versus frequency for the case of gain-guided channels with 1 = 2 = 1.0 for the symmetric (solid curve) and antisymmetric (dashed curve) supermodes.

Fig. 5
Fig. 5

Lasing spectrum of the proposed device under different operating conditions, (a) The end-section electrodes not biased (contacts opened), (b) the end-section electrodes shorted.

Fig. 6
Fig. 6

Calculated threshold gain for the device of Fig. 5 with end sections shorted to ground (1,2 = 0.03).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

T rt U = U ,
T rt = ( p 1 p 2 ) 2 [ r 1 ( r 2 A 2 + r 4 C 2 ) r 1 ( r 2 A + r 4 B ) C r 3 ( r 2 A + r 4 B ) C r 3 ( r 2 C 2 + r 4 B 2 ) ] ,
A p 1 p 2 exp ( i σ 1 L ) + p 2 p 1 exp ( i σ 2 L ) , B p 1 p 2 exp ( i σ 2 L ) + p 2 p 1 exp ( i σ 1 L ) , C exp ( i σ 1 L ) exp ( i σ 2 L ) .
σ 1 , 2 = γ ¯ ± s ,
p 1 , 2 2 = ( 1 ± Δ γ s ) / 2 .
( p 1 p 2 ) 2 [ r 1 r 2 A 2 + r 3 r 4 B 2 + ( r 1 r 4 + r 2 r 3 ) C 2 ] r 1 r 2 r 3 r 4 exp [ i 2 ( σ 1 + σ 2 ) L ] = 1 .
A = B = 2 exp ( i γ L ) cos   k L , C = 2 i exp ( i γ L ) sin   k L .
X 2 2 a X + 1 = 0 ,
X 1 2 r 2 exp ( i 2 γ L ) exp ( i ϕ ¯ ) ,
a 1 2 { [ 1 2 exp ( i Δ ϕ ) + 2 1 exp ( i Δ ϕ ) ] cos 2 k L [ 1 1 2 exp ( i ϕ ¯ ) + 1 2 exp ( i ϕ ¯ ) ] sin 2 k L } .
X = exp ( ± i cos 1 a ) .

Metrics