Abstract

Polarization splitters that use an asymmetric branching waveguide and can be fabricated along the Z axis as well as the X axis of LiNbO3 are proposed and demonstrated. In these devices, two polarization states are converted to two different spatial modes, and these modes are split by the asymmetric branching waveguide. The extinction ratios of the two polarization splitters are shown to be less than −12 dB.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Mikami, Appl. Phys. Lett. 36, 491 (1980).
  2. M. Masuda, G. L. Yip, Appl. Phys. Lett. 37, 20 (1980).
  3. H. Nakajima, T. Horimatsu, M. Seino, I. Sawaki, IEEE J. Quantum Electron. QE-18, 771 (1982).
  4. R. C. Alferness, L. L. Buhl, Opt. Lett. 10, 140 (1984).
  5. K. Habara, Electron. Lett. 23, 614 (1987).
  6. N. Goto, G. L. Yip, IEEE J. Lightwave Technol. 7, 1567 (1989).
  7. Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, Appl. Opt. 29, 337 (1990).
  8. Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, K. J. Orlowsky, Appl. Phys. Lett. 56, 120 (1990).
  9. K. G. Han, S. Kim, S. S. Choi, Opt. Lett. 15, 108 (1990).
  10. R. N. Thurston, E. Kapon, Y. Silberberg, IEEE J. Quantum Electron. QE-23, 1245 (1987).
  11. T. Tamir, Integrated Optics (Springer-Verlag, New York, 1979), Chap. 2.
  12. Thermophysical Properties Center, Thermophysical Properties of Matter, Vol. 13 of TPRC Data Series (Plenum, New York, 1977).
  13. F. Zernike, J. E. Midwiner, Applied Nonlinear Optics (Wiley, New York, 1973), Chap. 4.

1990 (3)

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, Appl. Opt. 29, 337 (1990).

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, K. J. Orlowsky, Appl. Phys. Lett. 56, 120 (1990).

K. G. Han, S. Kim, S. S. Choi, Opt. Lett. 15, 108 (1990).

1989 (1)

N. Goto, G. L. Yip, IEEE J. Lightwave Technol. 7, 1567 (1989).

1987 (2)

K. Habara, Electron. Lett. 23, 614 (1987).

R. N. Thurston, E. Kapon, Y. Silberberg, IEEE J. Quantum Electron. QE-23, 1245 (1987).

1984 (1)

1982 (1)

H. Nakajima, T. Horimatsu, M. Seino, I. Sawaki, IEEE J. Quantum Electron. QE-18, 771 (1982).

1980 (2)

O. Mikami, Appl. Phys. Lett. 36, 491 (1980).

M. Masuda, G. L. Yip, Appl. Phys. Lett. 37, 20 (1980).

Alferness, R. C.

Buhl, L. L.

Choi, S. S.

Goto, N.

N. Goto, G. L. Yip, IEEE J. Lightwave Technol. 7, 1567 (1989).

Habara, K.

K. Habara, Electron. Lett. 23, 614 (1987).

Han, K. G.

Henry, C. H.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, Appl. Opt. 29, 337 (1990).

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, K. J. Orlowsky, Appl. Phys. Lett. 56, 120 (1990).

Horimatsu, T.

H. Nakajima, T. Horimatsu, M. Seino, I. Sawaki, IEEE J. Quantum Electron. QE-18, 771 (1982).

Kapon, E.

R. N. Thurston, E. Kapon, Y. Silberberg, IEEE J. Quantum Electron. QE-23, 1245 (1987).

Kazarinov, R. F.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, K. J. Orlowsky, Appl. Phys. Lett. 56, 120 (1990).

Kim, S.

Kistler, R. C.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, Appl. Opt. 29, 337 (1990).

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, K. J. Orlowsky, Appl. Phys. Lett. 56, 120 (1990).

Masuda, M.

M. Masuda, G. L. Yip, Appl. Phys. Lett. 37, 20 (1980).

Midwiner, J. E.

F. Zernike, J. E. Midwiner, Applied Nonlinear Optics (Wiley, New York, 1973), Chap. 4.

Mikami, O.

O. Mikami, Appl. Phys. Lett. 36, 491 (1980).

Nakajima, H.

H. Nakajima, T. Horimatsu, M. Seino, I. Sawaki, IEEE J. Quantum Electron. QE-18, 771 (1982).

Orlowsky, K. J.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, K. J. Orlowsky, Appl. Phys. Lett. 56, 120 (1990).

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, Appl. Opt. 29, 337 (1990).

Sawaki, I.

H. Nakajima, T. Horimatsu, M. Seino, I. Sawaki, IEEE J. Quantum Electron. QE-18, 771 (1982).

Seino, M.

H. Nakajima, T. Horimatsu, M. Seino, I. Sawaki, IEEE J. Quantum Electron. QE-18, 771 (1982).

Shani, Y.

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, K. J. Orlowsky, Appl. Phys. Lett. 56, 120 (1990).

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, Appl. Opt. 29, 337 (1990).

Silberberg, Y.

R. N. Thurston, E. Kapon, Y. Silberberg, IEEE J. Quantum Electron. QE-23, 1245 (1987).

Tamir, T.

T. Tamir, Integrated Optics (Springer-Verlag, New York, 1979), Chap. 2.

Thurston, R. N.

R. N. Thurston, E. Kapon, Y. Silberberg, IEEE J. Quantum Electron. QE-23, 1245 (1987).

Yip, G. L.

N. Goto, G. L. Yip, IEEE J. Lightwave Technol. 7, 1567 (1989).

M. Masuda, G. L. Yip, Appl. Phys. Lett. 37, 20 (1980).

Zernike, F.

F. Zernike, J. E. Midwiner, Applied Nonlinear Optics (Wiley, New York, 1973), Chap. 4.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Y. Shani, C. H. Henry, R. C. Kistler, R. F. Kazarinov, K. J. Orlowsky, Appl. Phys. Lett. 56, 120 (1990).

O. Mikami, Appl. Phys. Lett. 36, 491 (1980).

M. Masuda, G. L. Yip, Appl. Phys. Lett. 37, 20 (1980).

Electron. Lett. (1)

K. Habara, Electron. Lett. 23, 614 (1987).

IEEE J. Lightwave Technol. (1)

N. Goto, G. L. Yip, IEEE J. Lightwave Technol. 7, 1567 (1989).

IEEE J. Quantum Electron. (2)

H. Nakajima, T. Horimatsu, M. Seino, I. Sawaki, IEEE J. Quantum Electron. QE-18, 771 (1982).

R. N. Thurston, E. Kapon, Y. Silberberg, IEEE J. Quantum Electron. QE-23, 1245 (1987).

Opt. Lett. (2)

Other (3)

T. Tamir, Integrated Optics (Springer-Verlag, New York, 1979), Chap. 2.

Thermophysical Properties Center, Thermophysical Properties of Matter, Vol. 13 of TPRC Data Series (Plenum, New York, 1977).

F. Zernike, J. E. Midwiner, Applied Nonlinear Optics (Wiley, New York, 1973), Chap. 4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the waveguide and field profile. Two polarizations are shown by the solid and dashed curves.

Fig. 2
Fig. 2

Electrodes of the X-propagating polarization splitter at Z-cut LiNbO3. V1 is the driving voltage for Ez, and V2 is the driving voltage for Ey.

Fig. 3
Fig. 3

Electrodes of the Z-propagating polarization splitter at Y-cut LiNbO3. The upper electrode induces electric field Ey, and the lower electrode is used as a heater to increase the temperature.

Fig. 4
Fig. 4

Change of TE-polarized light intensity with the applied voltage V1 in the Z-propagating polarization splitter. The scale of the ordinate is 10 log(I5/I6).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ n = 1 2 r 23 n o 3 E z for TE mode , Δ n = 1 2 r 33 n e 3 E z for TM mode ,
Δ n = 1 2 r 22 n o 3 E y for TE mode .
Δ n = + 1 2 r 22 n o 3 E y for TE mode , Δ n = 1 2 r 22 n o 3 E y for TM mode .

Metrics