Abstract

An object hidden behind a cloudy wall is shown to become visible when the wall is made absorbing. The underlying principle is that the absorption in a random medium preferentially reduces the intensity of the multiple scattered light (noise) over the ballistic signal (image). The intensity of the noise can be reduced below the ballistic signal intensity when the medium is made sufficiently absorbing, thus allowing us to see through an otherwise opaque random scattering wall.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, P. Yeh, Optical Waves in Crystal: Propagation and Control of Laser Radiation (Wiley, New York, 1984), p. 549.
  2. J. C. Dainty, ed., Laser Speckle and Related Phenomena (Springer-Verlag, Berlin, 1975), pp. 203–278.
  3. Z. S. Agranovich, V. A. Marchenko, The Inverse Problem of Scattering Theory (Gordon & Breach, New York, 1963).
  4. H. P. Baltes, ed., Inverse Source Problems in Optics (Springer-Verlag, Berlin, 1978).
  5. J. G. Fujimoto, S. De Silversti, E. P. Ippen, R. Margolis, A. Oseroff, Opt. Lett. 11, 150 (1986).
  6. G. T. Reynolds, Microsc. Acta 83, 55 (1980).
  7. I. Freund, M. Rosenbluh, S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
  8. S. Feng, C. Kane, P. A. Lee, A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
  9. M. J. Stephen, G. Cwilich, Phys. Rev. B 34, 7564 (1986).
  10. B. White, P. Sheng, M. Postel, G. Papanicolou, Phys. Rev. Lett. 63, 2228 (1989).
  11. K. M. Yoo, R. R. Alfano, Opt. Lett. 15, 320 (1990).
  12. M. Lax, V. Nayaramamurti, R. C. Fulton, Laser Optics of Condensed Matter, J. L. Birman, H. Z. Cummins, A. A. Kaplyanskii, eds. (Plenum, New York, 1987), pp 229–235.
  13. K. M. Yoo, F. Liu, R. R. Alfano, Phys. Rev. Lett. 64, 2647 (1990); Phys. Rev. Lett. 65, 2210 (1990).

1990 (2)

K. M. Yoo, F. Liu, R. R. Alfano, Phys. Rev. Lett. 64, 2647 (1990); Phys. Rev. Lett. 65, 2210 (1990).

K. M. Yoo, R. R. Alfano, Opt. Lett. 15, 320 (1990).

1989 (1)

B. White, P. Sheng, M. Postel, G. Papanicolou, Phys. Rev. Lett. 63, 2228 (1989).

1988 (2)

I. Freund, M. Rosenbluh, S. Feng, Phys. Rev. Lett. 61, 2328 (1988).

S. Feng, C. Kane, P. A. Lee, A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).

1986 (2)

1980 (1)

G. T. Reynolds, Microsc. Acta 83, 55 (1980).

Agranovich, Z. S.

Z. S. Agranovich, V. A. Marchenko, The Inverse Problem of Scattering Theory (Gordon & Breach, New York, 1963).

Alfano, R. R.

K. M. Yoo, F. Liu, R. R. Alfano, Phys. Rev. Lett. 64, 2647 (1990); Phys. Rev. Lett. 65, 2210 (1990).

K. M. Yoo, R. R. Alfano, Opt. Lett. 15, 320 (1990).

Cwilich, G.

M. J. Stephen, G. Cwilich, Phys. Rev. B 34, 7564 (1986).

De Silversti, S.

Feng, S.

S. Feng, C. Kane, P. A. Lee, A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).

I. Freund, M. Rosenbluh, S. Feng, Phys. Rev. Lett. 61, 2328 (1988).

Freund, I.

I. Freund, M. Rosenbluh, S. Feng, Phys. Rev. Lett. 61, 2328 (1988).

Fujimoto, J. G.

Fulton, R. C.

M. Lax, V. Nayaramamurti, R. C. Fulton, Laser Optics of Condensed Matter, J. L. Birman, H. Z. Cummins, A. A. Kaplyanskii, eds. (Plenum, New York, 1987), pp 229–235.

Ippen, E. P.

Kane, C.

S. Feng, C. Kane, P. A. Lee, A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).

Lax, M.

M. Lax, V. Nayaramamurti, R. C. Fulton, Laser Optics of Condensed Matter, J. L. Birman, H. Z. Cummins, A. A. Kaplyanskii, eds. (Plenum, New York, 1987), pp 229–235.

Lee, P. A.

S. Feng, C. Kane, P. A. Lee, A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).

Liu, F.

K. M. Yoo, F. Liu, R. R. Alfano, Phys. Rev. Lett. 64, 2647 (1990); Phys. Rev. Lett. 65, 2210 (1990).

Marchenko, V. A.

Z. S. Agranovich, V. A. Marchenko, The Inverse Problem of Scattering Theory (Gordon & Breach, New York, 1963).

Margolis, R.

Nayaramamurti, V.

M. Lax, V. Nayaramamurti, R. C. Fulton, Laser Optics of Condensed Matter, J. L. Birman, H. Z. Cummins, A. A. Kaplyanskii, eds. (Plenum, New York, 1987), pp 229–235.

Oseroff, A.

Papanicolou, G.

B. White, P. Sheng, M. Postel, G. Papanicolou, Phys. Rev. Lett. 63, 2228 (1989).

Postel, M.

B. White, P. Sheng, M. Postel, G. Papanicolou, Phys. Rev. Lett. 63, 2228 (1989).

Reynolds, G. T.

G. T. Reynolds, Microsc. Acta 83, 55 (1980).

Rosenbluh, M.

I. Freund, M. Rosenbluh, S. Feng, Phys. Rev. Lett. 61, 2328 (1988).

Sheng, P.

B. White, P. Sheng, M. Postel, G. Papanicolou, Phys. Rev. Lett. 63, 2228 (1989).

Stephen, M. J.

M. J. Stephen, G. Cwilich, Phys. Rev. B 34, 7564 (1986).

Stone, A. D.

S. Feng, C. Kane, P. A. Lee, A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).

White, B.

B. White, P. Sheng, M. Postel, G. Papanicolou, Phys. Rev. Lett. 63, 2228 (1989).

Yariv, A.

A. Yariv, P. Yeh, Optical Waves in Crystal: Propagation and Control of Laser Radiation (Wiley, New York, 1984), p. 549.

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystal: Propagation and Control of Laser Radiation (Wiley, New York, 1984), p. 549.

Yoo, K. M.

K. M. Yoo, F. Liu, R. R. Alfano, Phys. Rev. Lett. 64, 2647 (1990); Phys. Rev. Lett. 65, 2210 (1990).

K. M. Yoo, R. R. Alfano, Opt. Lett. 15, 320 (1990).

Microsc. Acta (1)

G. T. Reynolds, Microsc. Acta 83, 55 (1980).

Opt. Lett. (2)

Phys. Rev. B (1)

M. J. Stephen, G. Cwilich, Phys. Rev. B 34, 7564 (1986).

Phys. Rev. Lett. (4)

B. White, P. Sheng, M. Postel, G. Papanicolou, Phys. Rev. Lett. 63, 2228 (1989).

I. Freund, M. Rosenbluh, S. Feng, Phys. Rev. Lett. 61, 2328 (1988).

S. Feng, C. Kane, P. A. Lee, A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).

K. M. Yoo, F. Liu, R. R. Alfano, Phys. Rev. Lett. 64, 2647 (1990); Phys. Rev. Lett. 65, 2210 (1990).

Other (5)

M. Lax, V. Nayaramamurti, R. C. Fulton, Laser Optics of Condensed Matter, J. L. Birman, H. Z. Cummins, A. A. Kaplyanskii, eds. (Plenum, New York, 1987), pp 229–235.

A. Yariv, P. Yeh, Optical Waves in Crystal: Propagation and Control of Laser Radiation (Wiley, New York, 1984), p. 549.

J. C. Dainty, ed., Laser Speckle and Related Phenomena (Springer-Verlag, Berlin, 1975), pp. 203–278.

Z. S. Agranovich, V. A. Marchenko, The Inverse Problem of Scattering Theory (Gordon & Breach, New York, 1963).

H. P. Baltes, ed., Inverse Source Problems in Optics (Springer-Verlag, Berlin, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Theoretical prediction and experimental results of the total diffuse light and the signal intensity (in arbitrary units) for light transmitted through a random medium with different absorption lengths, using z = 10 mm, ls = 0.3 mm, and lt = 1.0 mm. The solid and dashed curves correspond to the ballistic and diffuse light intensity, respectively, as computed by Eqs. (2) and (3). The squares and triangles correspond to the measured ballistic and diffuse light intensity, respectively.

Fig. 2
Fig. 2

Transmitted pulse profiles through a slab of random medium 10 mm thick with a 0.3% concentration of latex beads of 0.296-μm diameter at different absorbing dye concentrations. The absorption lengths of these media are indicated on the curves.

Fig. 3
Fig. 3

Imaging setup (top) and photographic images of a cross: (a) no scatterer in the cell; (b) scatterer in the cell, λ = 620 nm; (c) scatterer and Malachite Green in the cell, λ = 620 nm, z/ls = 20, la = 4.6 mm; (d) scatterer and Malachite Green in the cell, λ = 515 nm, z/ls = 20, la = 75 mm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I z ( t ) = D π z 2 m = 1 m ( π z / d ) 2 sin ( m π z / d ) × exp [ D t ( m π / d ) 2 ] exp ( ν t / l a ) ,
I total = sinh [ 3 d 2 / l t l a ( 1 z / d ) ] 2 sinh 3 d 2 / l t l a .
I diff = Ω I total .
I c = f exp [ z ( 1 / l s + 1 / l a ) ] ,

Metrics