Abstract

Experiments show that the characteristic periodic damage pattern that results from the optical fuse can be produced by purely thermal means by heating the fiber to temperatures in the 700–1000°C range in the absence of light. The nature of the damage region bubbles suggests local temperatures high enough to soften the fiber core. The additional energy required may be supplied by an exothermic mechanism. Consideration of activated interstitial diffusion of various potential oxidants in silica suggests that diffusion-limited reactions of unoxidized sites with O2 could be responsible.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kashyap, K. J. Blow, Electron. Lett. 24, 47 (1988).
    [CrossRef]
  2. E. Yablonovitch, N. Bloembergen, Phys. Rev. Lett. 29, 907 (1972).
    [CrossRef]
  3. D. R Hand, R. St. J. Russell, Opt. Lett. 13, 767 (1988).
    [CrossRef] [PubMed]
  4. R. Kashyap, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper WJ1.
  5. L. N. Skuja, A. N. Streletsky, A. B. Pakovich, Solid State Commun. 50, 1069 (1984).
    [CrossRef]
  6. E. J. Friebele, D. L. Griscom, G. H. Sigel, J. Appl. Phys. 45, 3424 (1974).
    [CrossRef]
  7. N. M. Lawandy, Proc. Soc. Photo-Opt. Instrum. Eng. 1148, 175 (1989).
  8. D. P. Hand, P. St. J. Russell, Opt. Lett. 15, 102 (1990).
    [CrossRef] [PubMed]
  9. L. N. Skuja, A. N. Trukhin, A. E. Plaudis, Phys. Status Solidi A 84, K153 (1984).
    [CrossRef]
  10. R. L. Pfeffer, The Physics and Technology of Amorphous SiO2 (Plenum, New York, 1988), p. 181.
  11. R. A. B. Devine, C. Fiori, J. Appl. Phys. 58, 3368 (1985).
    [CrossRef]

1990 (1)

1989 (1)

N. M. Lawandy, Proc. Soc. Photo-Opt. Instrum. Eng. 1148, 175 (1989).

1988 (2)

1985 (1)

R. A. B. Devine, C. Fiori, J. Appl. Phys. 58, 3368 (1985).
[CrossRef]

1984 (2)

L. N. Skuja, A. N. Trukhin, A. E. Plaudis, Phys. Status Solidi A 84, K153 (1984).
[CrossRef]

L. N. Skuja, A. N. Streletsky, A. B. Pakovich, Solid State Commun. 50, 1069 (1984).
[CrossRef]

1974 (1)

E. J. Friebele, D. L. Griscom, G. H. Sigel, J. Appl. Phys. 45, 3424 (1974).
[CrossRef]

1972 (1)

E. Yablonovitch, N. Bloembergen, Phys. Rev. Lett. 29, 907 (1972).
[CrossRef]

Bloembergen, N.

E. Yablonovitch, N. Bloembergen, Phys. Rev. Lett. 29, 907 (1972).
[CrossRef]

Blow, K. J.

R. Kashyap, K. J. Blow, Electron. Lett. 24, 47 (1988).
[CrossRef]

Devine, R. A. B.

R. A. B. Devine, C. Fiori, J. Appl. Phys. 58, 3368 (1985).
[CrossRef]

Fiori, C.

R. A. B. Devine, C. Fiori, J. Appl. Phys. 58, 3368 (1985).
[CrossRef]

Friebele, E. J.

E. J. Friebele, D. L. Griscom, G. H. Sigel, J. Appl. Phys. 45, 3424 (1974).
[CrossRef]

Griscom, D. L.

E. J. Friebele, D. L. Griscom, G. H. Sigel, J. Appl. Phys. 45, 3424 (1974).
[CrossRef]

Hand, D. P.

Hand, D. R

Kashyap, R.

R. Kashyap, K. J. Blow, Electron. Lett. 24, 47 (1988).
[CrossRef]

R. Kashyap, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper WJ1.

Lawandy, N. M.

N. M. Lawandy, Proc. Soc. Photo-Opt. Instrum. Eng. 1148, 175 (1989).

Pakovich, A. B.

L. N. Skuja, A. N. Streletsky, A. B. Pakovich, Solid State Commun. 50, 1069 (1984).
[CrossRef]

Pfeffer, R. L.

R. L. Pfeffer, The Physics and Technology of Amorphous SiO2 (Plenum, New York, 1988), p. 181.

Plaudis, A. E.

L. N. Skuja, A. N. Trukhin, A. E. Plaudis, Phys. Status Solidi A 84, K153 (1984).
[CrossRef]

Russell, P. St. J.

Russell, R. St. J.

Sigel, G. H.

E. J. Friebele, D. L. Griscom, G. H. Sigel, J. Appl. Phys. 45, 3424 (1974).
[CrossRef]

Skuja, L. N.

L. N. Skuja, A. N. Streletsky, A. B. Pakovich, Solid State Commun. 50, 1069 (1984).
[CrossRef]

L. N. Skuja, A. N. Trukhin, A. E. Plaudis, Phys. Status Solidi A 84, K153 (1984).
[CrossRef]

Streletsky, A. N.

L. N. Skuja, A. N. Streletsky, A. B. Pakovich, Solid State Commun. 50, 1069 (1984).
[CrossRef]

Trukhin, A. N.

L. N. Skuja, A. N. Trukhin, A. E. Plaudis, Phys. Status Solidi A 84, K153 (1984).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, N. Bloembergen, Phys. Rev. Lett. 29, 907 (1972).
[CrossRef]

Electron. Lett. (1)

R. Kashyap, K. J. Blow, Electron. Lett. 24, 47 (1988).
[CrossRef]

J. Appl. Phys. (2)

E. J. Friebele, D. L. Griscom, G. H. Sigel, J. Appl. Phys. 45, 3424 (1974).
[CrossRef]

R. A. B. Devine, C. Fiori, J. Appl. Phys. 58, 3368 (1985).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

E. Yablonovitch, N. Bloembergen, Phys. Rev. Lett. 29, 907 (1972).
[CrossRef]

Phys. Status Solidi A (1)

L. N. Skuja, A. N. Trukhin, A. E. Plaudis, Phys. Status Solidi A 84, K153 (1984).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

N. M. Lawandy, Proc. Soc. Photo-Opt. Instrum. Eng. 1148, 175 (1989).

Solid State Commun. (1)

L. N. Skuja, A. N. Streletsky, A. B. Pakovich, Solid State Commun. 50, 1069 (1984).
[CrossRef]

Other (2)

R. L. Pfeffer, The Physics and Technology of Amorphous SiO2 (Plenum, New York, 1988), p. 181.

R. Kashyap, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper WJ1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Microscope pictures of fuse damage sites. Bottom: fuse sites created by heating in a tube furnace. Top: fuse initiated with 1-MW/cm2 laser radiation propagating.

Fig. 2
Fig. 2

Liquid-nitrogen-filled Dewar assembly and differential pressure gauge for fuse calorimetry.

Fig. 3
Fig. 3

Conical scattering by fuse damage sites.

Fig. 4
Fig. 4

Spatial mapping across the preform core of the 415-nm luminescence believed to be associated with the Ge 2 0 defect.

Fig. 5
Fig. 5

Diffusion of O2, OH, and O in silica. (Note that the diffusivities of atomic oxygen are multiplied by a factor of 105.)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

O 2 + Ge Si Ge O Si + O , Δ H 298 0 = ~ 633 kJ / mol ,
O 2 + Ge 2 0 GeO 2 , Δ H 298 0 = ~ 826 kJ / mol ,
O 2 + Ge ( N ) GeO O ˙ , Δ H 298 0 = ~ 660 kJ / mol ,

Metrics