Abstract

We describe a current sensor that uses the Faraday effect in two square rings of glass capable of measuring two independent currents simultaneously with a resolution of 1.2A/Hz. Pseudoheterodyne signal processing is used to recover the phase modulation produced by the Faraday effect.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, D. A. Jackson, IEEE J. Lightwave Technol. 4, 640 (1986).
    [Crossref]
  2. G. W. Day, in Optical Fiber Sensors, Vol. 44 of Springer Proceedings in Physics, H. J. Arditty, J. P. Dakin, R. Th. Kersten, eds. (Springer-Verlag, Berlin, 1989), p. 250.
    [Crossref]
  3. A. J. Rogers, Int. J. Optoelectron. 3, 391 (1988).
  4. S. Donati, V. Annovazzi-Lodi, T. Tambosso, IEE Proc. 135, 372 (1988).
  5. P. R. Forman, F. C. Jahoda, Appl. Opt. 27, 3088 (1988).
    [Crossref] [PubMed]
  6. D. Tang, G. W. Day, in Proceedings of IEEE Lasers and Electro-Optics Society 1988 Annual Meeting (IEEE Lasers and Electro-Optics Society, Piscataway, N.J., 1988), paper OS5.1.
  7. R. I. Laming, D. N. Payne, IEEE J. Lightwave Technol. 7, 2084 (1989).
    [Crossref]
  8. R. Ulrich, A. Simon, Appl. Opt. 18, 2241 (1979).
    [Crossref] [PubMed]
  9. F. Maystre, A. Bertholds, Opt. Lett. 14, 587 (1989).
    [Crossref] [PubMed]
  10. A. D. Kersey, M. A. Davis, in Optical Fiber Sensors, Vol. 44 of Springer Proceedings in Physics, H. J. Arditty, J. P. Dakin, R. Th. Kersten, eds. (Springer-Verlag, Berlin, 1989), p. 285.
    [Crossref]

1989 (2)

R. I. Laming, D. N. Payne, IEEE J. Lightwave Technol. 7, 2084 (1989).
[Crossref]

F. Maystre, A. Bertholds, Opt. Lett. 14, 587 (1989).
[Crossref] [PubMed]

1988 (3)

A. J. Rogers, Int. J. Optoelectron. 3, 391 (1988).

S. Donati, V. Annovazzi-Lodi, T. Tambosso, IEE Proc. 135, 372 (1988).

P. R. Forman, F. C. Jahoda, Appl. Opt. 27, 3088 (1988).
[Crossref] [PubMed]

1986 (1)

A. D. Kersey, D. A. Jackson, IEEE J. Lightwave Technol. 4, 640 (1986).
[Crossref]

1979 (1)

Annovazzi-Lodi, V.

S. Donati, V. Annovazzi-Lodi, T. Tambosso, IEE Proc. 135, 372 (1988).

Bertholds, A.

Davis, M. A.

A. D. Kersey, M. A. Davis, in Optical Fiber Sensors, Vol. 44 of Springer Proceedings in Physics, H. J. Arditty, J. P. Dakin, R. Th. Kersten, eds. (Springer-Verlag, Berlin, 1989), p. 285.
[Crossref]

Day, G. W.

D. Tang, G. W. Day, in Proceedings of IEEE Lasers and Electro-Optics Society 1988 Annual Meeting (IEEE Lasers and Electro-Optics Society, Piscataway, N.J., 1988), paper OS5.1.

G. W. Day, in Optical Fiber Sensors, Vol. 44 of Springer Proceedings in Physics, H. J. Arditty, J. P. Dakin, R. Th. Kersten, eds. (Springer-Verlag, Berlin, 1989), p. 250.
[Crossref]

Donati, S.

S. Donati, V. Annovazzi-Lodi, T. Tambosso, IEE Proc. 135, 372 (1988).

Forman, P. R.

Jackson, D. A.

A. D. Kersey, D. A. Jackson, IEEE J. Lightwave Technol. 4, 640 (1986).
[Crossref]

Jahoda, F. C.

Kersey, A. D.

A. D. Kersey, D. A. Jackson, IEEE J. Lightwave Technol. 4, 640 (1986).
[Crossref]

A. D. Kersey, M. A. Davis, in Optical Fiber Sensors, Vol. 44 of Springer Proceedings in Physics, H. J. Arditty, J. P. Dakin, R. Th. Kersten, eds. (Springer-Verlag, Berlin, 1989), p. 285.
[Crossref]

Laming, R. I.

R. I. Laming, D. N. Payne, IEEE J. Lightwave Technol. 7, 2084 (1989).
[Crossref]

Maystre, F.

Payne, D. N.

R. I. Laming, D. N. Payne, IEEE J. Lightwave Technol. 7, 2084 (1989).
[Crossref]

Rogers, A. J.

A. J. Rogers, Int. J. Optoelectron. 3, 391 (1988).

Simon, A.

Tambosso, T.

S. Donati, V. Annovazzi-Lodi, T. Tambosso, IEE Proc. 135, 372 (1988).

Tang, D.

D. Tang, G. W. Day, in Proceedings of IEEE Lasers and Electro-Optics Society 1988 Annual Meeting (IEEE Lasers and Electro-Optics Society, Piscataway, N.J., 1988), paper OS5.1.

Ulrich, R.

Appl. Opt. (2)

IEE Proc. (1)

S. Donati, V. Annovazzi-Lodi, T. Tambosso, IEE Proc. 135, 372 (1988).

IEEE J. Lightwave Technol. (2)

A. D. Kersey, D. A. Jackson, IEEE J. Lightwave Technol. 4, 640 (1986).
[Crossref]

R. I. Laming, D. N. Payne, IEEE J. Lightwave Technol. 7, 2084 (1989).
[Crossref]

Int. J. Optoelectron. (1)

A. J. Rogers, Int. J. Optoelectron. 3, 391 (1988).

Opt. Lett. (1)

Other (3)

A. D. Kersey, M. A. Davis, in Optical Fiber Sensors, Vol. 44 of Springer Proceedings in Physics, H. J. Arditty, J. P. Dakin, R. Th. Kersten, eds. (Springer-Verlag, Berlin, 1989), p. 285.
[Crossref]

D. Tang, G. W. Day, in Proceedings of IEEE Lasers and Electro-Optics Society 1988 Annual Meeting (IEEE Lasers and Electro-Optics Society, Piscataway, N.J., 1988), paper OS5.1.

G. W. Day, in Optical Fiber Sensors, Vol. 44 of Springer Proceedings in Physics, H. J. Arditty, J. P. Dakin, R. Th. Kersten, eds. (Springer-Verlag, Berlin, 1989), p. 250.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical system. BS’s, beam splitters; P’s, polarizers; rings 1 and 2, Faraday glass rings; I1 and I2, the currents to be measured; D1 and D2, detectors for rings 1 and 2; Dr, the detector for the reference signal.

Fig. 2
Fig. 2

Signal-processing electronics. PC1 and PC2 are phase comparators constructed from AD630 integrated circuits.

Fig. 3
Fig. 3

Spectrum analyzer reading of the output of (a) detector 1 for an effective current of 128 A and (b) detector 2 for a current of 113 A. The signal-to-noise ratios for channels 1 and 2 are 19.66 and 18.58 dB Hz, respectively. The bandwidth is 9.5485 Hz.

Fig. 4
Fig. 4

Spectrum analyzer reading of the output of (a) phase comparator 1 for an effective current of 128 A and (b) phase comparator 2 for an effective current of 113 A. The signal-to-noise ratio for channels 1 and 2 are 30.76 and 29.68 dB Hz, respectively. The bandwidth is 9.5485 Hz.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E 1 = [ sin ( ω t ) - cos ( ω t ) ] ,
F = V c B d l ,
E out = P S ( ϕ ) F 4 R F 3 R F 2 R F 1 E 1 ,
P = [ 1 0 0 0 ] ,             S ( ϕ ) = [ cos ( ϕ ) sin ( ϕ ) - sin ( ϕ ) cos ( ϕ ) ] , F i = [ A B - B A * ] ,             R = [ ρ x 0 0 ρ y ] ,
A = cos ( ψ / 2 ) + i sin ( ψ / 2 ) cos ( ) ,             B = sin ( ψ / 2 ) sin ( ) ,             tan ( ) = 2 F i / γ ,             ( ψ / 2 ) 2 = ( γ / 2 ) 2 + F i 2 .
E out 2 = ( I 0 / 2 ) [ 1 + cos ( 2 ω t + 2 μ 0 V I + 2 ϕ ) ] ,
i K ( θ - θ 1 ) = K [ μ 0 V I 0 sin ( ω m t + θ c ) + θ 0 - θ r ] ,

Metrics