Abstract

By use of a detector array in the image plane of a Fourier spectrometer, a massively parallel Fourier spectrometer array can be constructed. This array is expected to collect efficiently spectral images with high spatial and spectral resolutions. We present a brief analysis of the signal-to-noise ratio and our first experimental results.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Vane, ed., Imaging Spectroscopy II, Proc. Soc. Photo-Opt. Instrum. Eng.834 (1987).
  2. K. Itoh, Y. Ohtsuka, J. Opt. Soc. Am. A 3, 94 (1986).
    [Crossref]
  3. J. M. Mariotti, S. T. Ridgway, Astron. Astrophys. 195, 350 (1988).
  4. P. R. Griffiths, J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, New York, 1986).
  5. D. Simons, L. Cowie, CFHT Information Bulletin No. 22 (Canada–France–Hawaii Telescope Corporation, Kamuela, Hawaii, 1990), p. 8.
  6. D. Simons, J. P. Maillard, L. Cowie, CFHT Information Bulletin No. 24 (Canada–France–Hawaii Telescope Corporation, Kamuela, Hawaii, 1991), p. 8.
  7. J. Gay, D. Mekarnia, J. Opt. 18, 119 (1987).
    [Crossref]
  8. L. Lindegren, D. Dravins, Astron. Astrophys. 67, 241 (1978).
  9. L. Mertz, Transformation in Optics (Wiley, New York, 1965), Chap. 1.
  10. E. Ribak, C. Roddier, F. Roddier, J. B. Breckinridge, Appl. Opt. 27, 1183 (1988).
    [Crossref] [PubMed]

1988 (2)

J. M. Mariotti, S. T. Ridgway, Astron. Astrophys. 195, 350 (1988).

E. Ribak, C. Roddier, F. Roddier, J. B. Breckinridge, Appl. Opt. 27, 1183 (1988).
[Crossref] [PubMed]

1987 (1)

J. Gay, D. Mekarnia, J. Opt. 18, 119 (1987).
[Crossref]

1986 (1)

1978 (1)

L. Lindegren, D. Dravins, Astron. Astrophys. 67, 241 (1978).

Breckinridge, J. B.

Cowie, L.

D. Simons, L. Cowie, CFHT Information Bulletin No. 22 (Canada–France–Hawaii Telescope Corporation, Kamuela, Hawaii, 1990), p. 8.

D. Simons, J. P. Maillard, L. Cowie, CFHT Information Bulletin No. 24 (Canada–France–Hawaii Telescope Corporation, Kamuela, Hawaii, 1991), p. 8.

de Haseth, J. A.

P. R. Griffiths, J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, New York, 1986).

Dravins, D.

L. Lindegren, D. Dravins, Astron. Astrophys. 67, 241 (1978).

Gay, J.

J. Gay, D. Mekarnia, J. Opt. 18, 119 (1987).
[Crossref]

Griffiths, P. R.

P. R. Griffiths, J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, New York, 1986).

Itoh, K.

Lindegren, L.

L. Lindegren, D. Dravins, Astron. Astrophys. 67, 241 (1978).

Maillard, J. P.

D. Simons, J. P. Maillard, L. Cowie, CFHT Information Bulletin No. 24 (Canada–France–Hawaii Telescope Corporation, Kamuela, Hawaii, 1991), p. 8.

Mariotti, J. M.

J. M. Mariotti, S. T. Ridgway, Astron. Astrophys. 195, 350 (1988).

Mekarnia, D.

J. Gay, D. Mekarnia, J. Opt. 18, 119 (1987).
[Crossref]

Mertz, L.

L. Mertz, Transformation in Optics (Wiley, New York, 1965), Chap. 1.

Ohtsuka, Y.

Ribak, E.

Ridgway, S. T.

J. M. Mariotti, S. T. Ridgway, Astron. Astrophys. 195, 350 (1988).

Roddier, C.

Roddier, F.

Simons, D.

D. Simons, L. Cowie, CFHT Information Bulletin No. 22 (Canada–France–Hawaii Telescope Corporation, Kamuela, Hawaii, 1990), p. 8.

D. Simons, J. P. Maillard, L. Cowie, CFHT Information Bulletin No. 24 (Canada–France–Hawaii Telescope Corporation, Kamuela, Hawaii, 1991), p. 8.

Appl. Opt. (1)

Astron. Astrophys. (2)

J. M. Mariotti, S. T. Ridgway, Astron. Astrophys. 195, 350 (1988).

L. Lindegren, D. Dravins, Astron. Astrophys. 67, 241 (1978).

J. Opt. (1)

J. Gay, D. Mekarnia, J. Opt. 18, 119 (1987).
[Crossref]

J. Opt. Soc. Am. A (1)

Other (5)

G. Vane, ed., Imaging Spectroscopy II, Proc. Soc. Photo-Opt. Instrum. Eng.834 (1987).

L. Mertz, Transformation in Optics (Wiley, New York, 1965), Chap. 1.

P. R. Griffiths, J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, New York, 1986).

D. Simons, L. Cowie, CFHT Information Bulletin No. 22 (Canada–France–Hawaii Telescope Corporation, Kamuela, Hawaii, 1990), p. 8.

D. Simons, J. P. Maillard, L. Cowie, CFHT Information Bulletin No. 24 (Canada–France–Hawaii Telescope Corporation, Kamuela, Hawaii, 1991), p. 8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Type of optics for Fourier-transform spectral imaging in the image plane. O, object; IS, image detector; M’s, plane mirrors; L’s, lenses; BS, beam splitter.

Fig. 2
Fig. 2

Cross sections of the object (four-color plastic doll illuminated by a tungsten lamp) perpendicular to the wavelength axis. The numbers in each cross section denote the wavelength in nanometers.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Δ z = z cos θ .
I ( r , z ) = l S ( r , k ) [ 1 + cos ( 2 k z cos θ ) ] d k ,
δ k = 1 / ( N d cos θ ) ,
k max = 1 / ( d cos θ ) ,
I 0 = η P T / ( M x M y N s ) ,
SNR p i = [ η P T / ( 2 M x M y N s ) ] 1 / 2 .
SNR p s = ( N s 1 / 2 / M s ) SNR p i .
SNR p s = [ η P T / ( 2 M x M y ) ] 1 / 2 / M s .
SNR d i = η P T / ( 2 n d M x M y N s ) ,
SNR d s = η P T / ( 2 n d N s 1 / 2 M x M y M s ) .
I 0 = η P T / ( M x M y N x N y N s ) .
SNR p s = ( N S I 0 / 2 ) / M s = [ η P T / ( 2 M x M y N x N y ) ] / M s .
n d = n d / ( N x N y ) .
SNR d s = I 0 / ( 2 n d ) = { η P T / [ 2 n d M x M y M s ( N x N y N s ) 1 / 2 ] } .

Metrics